
Multi-label Classification with Feature-aware Implicit

Encoding and Generalized Cross-entropy Loss

Fatemeh Farahnak-Ghazani

MS student

Computer Engineering

Sharif University of Technology

Tehran, Iran, 1458889694

Email: farahnak@ce.sharif.edu

Mahdieh Soleymani Baghshah

Assistant Professor

Computer Engineering

Sharif University of Technology

Tehran, Iran, 1458889694

Email: soleymani@sharif.edu

Abstract— In multi-label classification problems, each instance

can simultaneously have multiple labels. Since the whole number

of available labels in real-world applications tends to be (very)

large, the computational cost becomes an important challenge and

recently label space dimension reduction (LSDR) methods have

received attention. These methods first encode the output space to

a low-dimensional latent space. Afterwards, they predict the latent

space from the feature space and reconstruct the original output

space using a suitable decoding method. The encoding method can

be implicit which learns a code matrix in the latent space for the

available data or explicit which learns a direct encoding function.

It can be feature-aware which considers predictability of the latent

space from the feature space or not feature-aware which obtains

the latent space from only the label space. In this paper, we

propose FIECE method which is a feature-aware implicit encoding

method. FIECE uses a generalized cross-entropy loss function for

reconstruction error of the label space. Since label vectors in these

problems are usually sparse, we use a parameter in the cost

function to address the imbalanced classification problem for each

label. Extensive experiments on several datasets demonstrate

effectiveness of the proposed method compared to some previous

methods.

Keywords- feature-aware encoding; generalized cross-entropy;

implicit encoding; label space dimension reduction; multi-label

classification

I. INTRODUCTION

Multi-label classification is an important problem in data
analysis and has received a lot of attention by researchers
especially in the last years. In this problem each instance can
simultaneously have multiple labels. For example, an image can
have different labels or tags such as “sea”, “boat”, and “beach”.
Some applications of multi-label classification are automatic
image annotation, video annotation, text classification, gene
function prediction, and music genre classification. Until now,
many methods have been proposed to solve the multi-label
classification problem. Most of these methods learn a mapping
from the input space to the output space directly [1], [2], [3], [4],
[5], [6]. For example, BR [1] is a simple method which learns
independent binary classifiers for labels.

In some recent applications of multi-label classification, the
whole number of available labels tends to be (very) large and the
label vector of each instance is sparse. Thus, for these
applications, the computational cost of methods becomes an
important challenge. One of the paradigms presented to tackle
multi-label classification problems with a large number of
possible labels is the label space encoding. Some recent methods
present a max/large margin formulation for this problem and
then convert it to a metric learning problem [7], [8]. LM-kNN
[8] is a scalable state-of-the-art multi-label classification method
and learns an encoding matrix which transforms the label space
to an embedded space by solving a large margin formulation
with constraints on k nearest neighbor instances for each
instance. Indeed, LM-kNN is a scalable extension of the
proposed method in [9] in which the constraints for each
instance are on all other instances. Another class of label space
encoding methods known as label space dimension reduction
(LSDR) encode the label space to a low-dimensional latent
space [10], [11], [12], [13], [14]. Then, they learn predictive
mappings from the feature space to this latent space rather than
the original high-dimensional label space at much lower cost. In
the prediction phase, they first obtain the code vector of each
instance in the latent space based on its feature vector using the
learnt mappings. Then, this code vector is decoded to its original
label vector. The encoding method is called explicit if there
exists a specific encoding function and called implicit if the code
matrix (in the latent space) - assuming to be the result of an
implicit encoding function - is learnt by optimizing a cost
function. It is called feature-aware if it considers the
predictability of the latent space from the input space during the
learning process (and not feature-aware if it doesn’t consider it).
LSDR methods do not attend that the number of zeros for each
label is usually much more than ones in multi-label classification
problems and each instance has a sparse label vector. Moreover,
they usually consider a simple cost function such as Sum of
Square Error (SSE) for reconstruction error of the label space
while the labels have binary values and SSE is not a proper cost
function for this purpose.

In this paper, we propose a feature-aware implicit encoding
method with a generalized cross-entropy loss function which is
better than sum of square error for classification problems and

handles imbalance between the number of zeros and ones in
label vectors.

The remaining of this paper is organized as follows. Sec-tion
2 includes definition of multi-label classification problem and a
review of related works. Section 3 presents the proposed method
in detail. The setting and results of experiments are included in
Section 4. Finally, Section 5 includes the paper conclusion.

II. RELATED WORK

Assume {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑁 is a set of 𝑁 training instances, where

𝑥𝑖 ∈ 𝒳 (and 𝒳 = ℝ𝑑) is the 𝑑-dimensional feature vector of the
𝑖 th instance and 𝑦𝑖 ∈ 𝒴 = {0, 1}𝑄 is the corresponding 𝑄 -
dimensional label vector. 𝑄 is the whole number of available
labels. The one/zero-valued entries in the label vector of each
instance indicate its relevant/irrelevant labels. The data feature
matrix is 𝑋𝑁×𝑑 = [𝑥1, … , 𝑥𝑁]𝑇 and the label matrix is 𝑌𝑁×𝑄 =
[𝑦1 , … , 𝑦𝑁]𝑇. The goal of the multi-label classification problem
is to find a mapping ℱ: 𝒳 → 𝒴 to predict the label vector of a
testing instance based on its feature vector.

Most of the proposed methods to solve the multi-label
classification problem learn the mapping ℱ from the input space
to the output space directly. Since computational cost is an
important challenge in recent applications with large number of
available labels, LSDR methods have received attention
recently. These methods consider a low dimensional latent space
𝒞 ⊂ ℝ𝐿 (𝐿 ≪ 𝑄) between the input space and the output space,
which can be viewed as an encoding of the output space.
Afterwards, they learn the predictive mappings ℋ: 𝒳 → 𝒞 from
the input space to this latent space rather than to the original
output space. To find the label vector of an unseen instance, they
first predict the corresponding latent vector based on its feature
vector using ℋ , then use a decoding function 𝒬: 𝒞 → 𝒴
followed by a thresholding to obtain its label vector.

CS [10] is one of the first methods which uses LSDR and
encodes the label vectors using a small number of random
projections under the sparsity assumption for label vectors.
Then, it uses standard algorithms in the decoding phase to
recover the original label vectors. PLST [11] uses Principal
Component Analysis (PCA) to transform the label space to a
low-dimensional latent space. CPLST [12] combines the cost
function of PCA and error of predicting the latent space from the
input space using linear regression to propose a feature-aware
label space dimension reduction method. FaIE [13] considers a
code matrix in a low-dimensional latent space as a result of an
implicit encoding function and learns it by optimizing a cost
function which maximizes both predictability of the latent space
and recoverability of the output space. This method has a
feature-aware implicit label space encoding.

Among LSDR methods, those which have feature-aware
encoding are more efficient because of considering the
predictability of latent space [12], [13] from the input space.
Besides those which have implicit encoding can be more
effective because no limiting assumption is considered on the
encoding function [13]. CPLST and FaIE are state-of-the-art
LSDR methods.

III. PROPOSED APPROACH

In this section, we propose a feature-aware implicit encoding
method which uses a generalized cross-entropy loss function to
consider the reconstruction error of labels. This loss function has
a parameter that addresses the imbalance of zeros and ones in
label vectors.

A. Proposed FIECE

To achieve good performance, LSDR methods need to have
both appropriate mapping ℋ and decoding function 𝒬 [13].
Therefore, the proposed FIECE simultaneously minimizes the
prediction error of the latent space and the reconstruction error
of the output space to obtain required parameters including the
code matrix 𝐶 and the matrix 𝐷 used in the decoding phase. For
the prediction error of the latent space from the input space, the
SSE cost function is used and for the reconstruction error of the
label space from the latent space as mentioned earlier a
generalized cross-entropy (with a balancing parameter) is used.
These two cost functions are combined with each other to obtain
the overall one. After solving the optimization problem and
learning matrices 𝐶 and 𝐷, a linear ridge regression is utilized to
learn a prediction matrix 𝑊 that is used to find 𝐶 from 𝑋. To
predict the label vector of an unseen instance, it first predicts the
corresponding latent vector based on the feature vector using the
matrix 𝑊 . Afterwards, it uses the matrix 𝐷 and a nonlinear
function to obtain the real valued label vector and then uses a
threshold to obtain its binary valued label vector.

1) Prediction error of the latent space
To predict the code matrix 𝐶𝑁×𝐿 from the feature matrix

𝑋𝑁×𝑑, the transformation matrix 𝑊𝑑×𝐿 is used:

𝐶̂ = 𝑋𝑊

(1)

The prediction error of reaching the latent space from the

feature space denoted as 𝐽1(𝐶, 𝐶̂) is computed as follows:

𝐽1
(𝐶, 𝐶̂) = ∑ ∑‖𝑐𝑖

(𝑗)
− 𝑐𝑖

(𝑗)
‖

2
𝐿

j=1

𝑁

𝑖=1

= ‖𝐶 − 𝑋𝑊‖𝐹
2 (2)

2) Reconstruction error of output space
To decode the label matrix 𝑌 from the code matrix 𝐶 , a

transformation matrix 𝐷 is utilized. To use the cross-entropy
loss function as a more desirable loss function for classification
problems, a logistic sigmoid function is needed to be applied on
the resulting matrix as follows:

𝑌̂ = 𝜎(𝜇𝐶𝐷)

(3)

where 𝜎(𝑥) =
1

1+𝑒𝑥𝑝 (−𝑥)
 and 𝜇 is a parameter that is used to

control steepness of the sigmoid function. The reconstruction
error of the output based on a generalized cross-entropy loss
function is computed as follows:

𝐽
2
(𝑌, 𝑌̂) = − ∑ ∑ (𝛽 𝑦

𝑖
(𝑗) 𝑙𝑛(𝑦̂

𝑖

(𝑗))

𝑄

𝑗=1

𝑁

𝑖=1

+ (1 − 𝑦
𝑖
(𝑗)) 𝑙𝑛(1 − 𝑦̂

𝑖

(𝑗)))

+ 𝛾‖𝐷‖𝐹
2

(4)

where 𝑦𝑖
(𝑗)

 and 𝑦̂𝑖
(𝑗)

 denote the 𝑗th label in the corresponding

original and predicted label vector of the 𝑖 th instance

respectively. 𝛾 is a regularization parameter that is used as the
coefficient of the regularization term on the matrix 𝐷 and ‖. ‖𝐹
is the Frobenius norm of a matrix. 𝛽 is balancing parameter
which is defined as the proportion of the mean number of zeros
in training label vectors and the mean number of ones in this
vectors, by:

𝛽 =

1
𝑁

∑ (𝑄 − ‖𝑦𝑖‖1)𝑁
𝑖=1

1
𝑁

∑ ‖𝑦𝑖‖1
𝑁
𝑖=1

(5)

where ‖. ‖1 denotes the 𝐿1 norm of a vector. Since the number
of ones in label vectors in the multi-label classification problems
is low, considering this parameter causes equal importance in
predicting zeros and ones in label vectors. If we do not consider
this parameter, the model tends to predict the zero-valued labels
right to cause less error in 𝐽2 , and pays less attention to
predicting the one-valued labels.

Assuming 𝐶 = [𝑐1, 𝑐2, … , 𝑐𝑁]𝑇 and 𝐷 = [𝑑1, 𝑑2, … , 𝑑𝑄] , by

substituting (3) in (4), the following cost function is obtained:

𝐽2
(𝑌, 𝑌̂) = − ∑ ∑ (𝛽 𝑦

𝑖
(𝑗) 𝑙𝑛 (𝜎(𝜇𝑐𝑖

𝑇𝑑𝑗))

𝑄

𝑗=1

𝑁

𝑖=1

+ (1

− 𝑦
𝑖
(𝑗)) 𝑙𝑛 (1 − 𝜎(𝜇𝑐𝑖

𝑇𝑑𝑗)))

+ 𝛾‖𝐷‖𝐹
2

(6)

Equation (6) can be written using a new notation as follows:

𝐽2
(𝑌, 𝑌̂) = − ∑ ∑ (𝛽 𝑌𝑖,𝑗 ln (𝜎(𝜇𝐶𝑖,.𝐷.,𝑗))

𝑄

𝑗=1

𝑁

𝑖=1

+ (1

− 𝑌𝑖,𝑗) ln (1 − 𝜎(𝜇𝐶𝑖,.𝐷.,𝑗)))

+ 𝛾‖𝐷‖𝐹
2 (7)

where for an arbitrary matrix 𝐴, 𝐴𝑖,𝑗 denotes the entry in the 𝑖th

row and the 𝑗th column of the matrix 𝐴. 𝐴𝑖,. shows the 𝑖th row

and 𝐴.,𝑗 denotes the 𝑗th column of this matrix.

3) The proposed cost function
By integrating the prediction error of the latent space and the

reconstruction error of the output space (with the balancing

parameter 𝛼 for the former), the overall cost function is defined
as:

𝐽(𝐶, 𝐷, 𝑊) = 𝛼 𝐽1(𝐶, 𝐶̂) + 𝐽2(𝑌, 𝑌̂) (8)

𝐽(𝐶, 𝐷, 𝑊) = 𝛼 ‖𝐶 − 𝑋𝑊‖𝐹
2

− ∑ ∑ (𝛽 𝑌𝑖,𝑗 ln (𝜎(𝜇𝐶𝑖,.𝐷.,𝑗))

𝑄

𝑗=1

𝑁

𝑖=1

+ (1

− 𝑌𝑖,𝑗) ln (1 − 𝜎(𝜇𝐶𝑖,.𝐷.,𝑗)))

+ 𝛾‖𝐷‖𝐹
2

(9)

4) Minimizing the cost function
First we obtain the optimum value of the matrix 𝑊, which is

appeared only in the first statement:

∂

∂𝑊
‖𝐶 − 𝑋𝑊‖𝐹

2 = 0

⇒ 𝑊 = (𝑋𝑇𝑋)−1𝑋𝑇𝐶

(10)

By substituting (9) in 𝐽1(𝐶, 𝐶̂) we obtain

𝐽
1
(𝐶, 𝐶̂) = 𝐓𝐫(𝐶𝑇(𝐼 − Δ)𝐶) (11)

Δ = 𝑋(𝑋𝑇𝑋)−1𝑋𝑇

(12)

where 𝐓𝐫(.) denotes the trace of a matrix. The matrix 𝑋𝑇𝑋 is
assumed to be invertible which in practice we add a small value

𝜖 to its diagonal elements to ensure the matrix is invertible.

By replacing (10) in (8), the cost function 𝐽 will be a function of
𝐶 and 𝐷. Since 𝐽(𝐶, 𝐷) is nonlinear relative to both matrices, the
gradient descent (with learning rate 𝜂) is used to learn them in
which we need these derivations:

∂𝐽1(𝐶, 𝐶̂)

∂𝐶
= 2(𝐼 − Δ)𝐶

(13)

∂𝐽2(𝐶, 𝐶̂)

∂𝐶𝑖,𝑘
= − ∑ 𝜇𝐷𝑘,𝑗 (𝛽 𝑌𝑖,𝑗 (1 − 𝜎(𝐶𝑖,.𝐷.,𝑗))

𝑄

𝑗=1

− (1 − 𝑌𝑖,𝑗)𝜎(𝐶𝑖,.𝐷.,𝑗))

(14)

∂𝐽1(𝐶, 𝐶̂)

∂𝐷
= 0 (15)

∂𝐽2(𝑌, 𝑌̂)

∂𝐷𝑘,𝑗
= − ∑ 𝜇𝐶𝑖,𝑘 (𝛽 𝑌𝑖,𝑗 (1 − 𝜎(𝐶𝑖,.𝐷.,𝑗))

𝑄

𝑗=1

− (1 − 𝑌𝑖,𝑗)𝜎(𝐶𝑖,.𝐷.,𝑗)) + 2 𝛾𝐷

(16)

5) Learning regression functions to predict the latent space
After learning the code matrix 𝐶 , we use a linear ridge

regression to learn matrix 𝑊 to predict the matrix 𝐶 from the
matrix 𝑋 according to training data, which will be used in the
prediction phase. The prediction matrix 𝑊 can be found as in
(10).

6) Prediction phase

To predict the label vector of an unseen instance based on its
feature vector, first we predict its code vector 𝑐𝑡𝑒𝑠𝑡 using
prediction matrix 𝑊. Then, we use a decoding function with the

learnt matrix 𝐷 and replace 𝐶 by [𝑐𝑡𝑒𝑠𝑡]𝑇
 in (3) to obtain a real

valued output vector. Afterwards, we use a threshold to obtain
the corresponding label vector with binary values.

B. Kernel Version

Similar to the previous works [12], [13], we use the kernel
trick to capture more sophisticated relations between the feature
space and the latent space. Assume each feature vector 𝑥𝑖 is
mapped to a new feature vector 𝜃𝑖 using a mapping function and

𝛩 is the new feature matrix with 𝑁 rows. 𝜅(𝑥𝑖 , 𝑥𝑗) = 𝜃𝑖
𝑇𝜃𝑗 is

the kernel function and 𝐾 = 𝛩𝛩𝑇 is the kernel matrix.
According to the representor theorem, the mapping function
from the new feature space to the latent space has the form 𝑊′ =
 𝛩𝑇𝐵 , where 𝐵𝑁×𝐿 is the coefficient matrix. In this case, the
prediction error of the latent space is as follows:

𝐽1
(𝐶, 𝐶̂) = ‖𝐶 − 𝛩𝑊′‖

𝐹

2

 = ‖𝐶 − 𝛩𝛩𝑇𝐵‖𝐹
2

 = ‖𝐶 − 𝐾𝐵‖𝐹
2

(17)

In this formula, we can assume that the feature matrix 𝑋 is
replaced by 𝐾 and the prediction matrix 𝑊 is replaced by 𝐵
compared to the linear case. Thus, the solution for this case is
obtained by the same replacements. That means Eq. (12) for
calculating Δ which is used in the cost function of linear case, is
changed to:

Δ = 𝐾(𝐾𝑇𝐾)−1𝐾𝑇 (18)

and all the other equations remain unchanged. Similarly, we add

small value 𝜖 to all entries on the diagonal of the matrix 𝐾 to
make it invertible.

In the prediction phase, we use the kernel ridge regression
instead of the linear ridge regression to find the latent space from
the input space.

IV. EXPERIMENTS

We evaluate the performance of the proposed FIECE on a
variety of multi-label datasets and compare its results with other
methods using three evaluation measurements.

A. Experimental Setup

1) Datasets
The experiments are performed on five multi-label datasets

with a relatively large number of possible labels. Table 1

presents properties of these datasets. The first two datasets,
mediamill, and cal500 are downloaded from Mulan [15]. The
second three datasets, corel5k, espgame, and iaprtc12 are
prepared image datasets downloaded from [16] for which image
features using different methods have been extracted. For these

three datasets, we use 100 features extracted using DenseHue
method. Table 1 represents properties of these datasets.

2) Performance Measures
There are several performance measures to evaluate multi-

label classification methods and compare them with each other.
We use label-based micro-F1 and example-based example-F1
which are the most popular and commonly used measures
recently [8].

3) Baseline Methods
To validate our method and compare it with other methods,

we take BR [1], LM-kNN [8], PLST [11], kernel-CPLST [12],
FaIE [13] and kernel-FaIE.

4) Settings
We report the results of LSDR methods including PLST,

CPLST, FaIE, and our proposed FIECE by varying dimension
reduction rate:

Dimension reduction rate = 𝐿/𝑄 (19)

in the range {0.1, 0.2, 0.3, 0.4, 0.5}. Following the settings in
[13], for datasets with more than 5000 instances, we select 5000
instances of them randomly to reduce computational cost.
Afterwards, we divide each dataset into 5 parts evenly and
randomly and perform 5 runs for each method corresponding to
these parts. In each run, one of the parts is considered as a test
part and the others are considered as train parts. Then, we
average over the results which are obtained using the mentioned
evaluation measures and report their mean and standard
deviation. For methods that are extended to kernel version, we
use the Gaussian kernel and set the smoothing parameter as
twice the average of the Euclidean distance between each pair of
feature vectors for the corresponding part of the dataset. For the
kernel ridge regression, we use functions implemented in [17].
If a method has parameter(s), we divide the training instances
into 5 parts randomly and use the first four parts for training and
the last one for validation. Then, we consider a range of values
for each parameter and use grid search to select the ones which
cause the best results on validation data. Other settings for each
method are as follows:

 FIECE (our method): The parameter 𝜇 used in the
decoding phase is set to 0.01. This parameter is used to
smooth the output of the decoding function, so the
prediction error obtained using the generalized cross-
entropy loss function becomes computationally
feasible. In other words, it prevents the prediction error

from being infinite. The regularization parameter 𝛾 is
selected from {0.01, 0.05, 0.1, 0.5} and the balancing

parameter 𝛼 is chosen from {0, 0.05, 0.1, 0.5}. The
learning rate in gradient descent method is set to 0.1.

The small-valued parameter 𝜖 is set to 10−4.
 BR: We use package LIBLINEAR [18] to learn

independent binary classifiers and use L2-regularized
logistic regression in the training function. To obtain
binary classification results we use 0.5 as a threshold.

 FaIE: The balancing parameter 𝛼 is selected from
{10−1, 100, … , 104} and similar to FIECE the

corresponding parameter 𝜖 is set to 10−4. The code is

Dataset Domain
of instances

(𝑵)
of features

(𝒅)
of labels

(𝑸)

mediamill video 43907 120 101

cal500 music 502 68 174

corel5k image 4999 100 260

espgame image 20770 100 268

TABLE I. PROPERTIES OF DATASETS.

received from the authors, but is changed in some cases
to be comparable with other methods.

 LM-kNN: According to the setting in [8], the number
of nearest neighbors is set as 𝑘 = 10 . The code is
received from the authors.

B. Experimental results

 The average results of all comparison methods on all five
datasets with different dimension reduction rates are represented
in terms of micro-F1 and example-F1 in Fig. 1 and Fig. 2
respectively. Note that for BR and LM-kNN, the results are
repeated for different dimension reduction rates to make them
comparable with LSDR methods. The experimental results of
both linear and kernel version of LSDR methods are reported in

Figure 2. Examole-F1 results of all methods on all datasets with different dimension reduction rates.

Figure 1. Micro-F1 results of all methods on all datasets with different dimension reduction rates.

the figures. Since we found that linear PLST and linear CPLT
have the same results, we reported the results of the earlier
method. According to the obtained results, we can see that the
linear FaIE outperforms linear PLST on all the datasets. kernel-
FaIE has similar but slightly better performance than kernel-
CPLST. Kernel version of both methods yields better
performance than their linear versions except on cal500 which
yields similar performance. The comparison results of the two
LSDR methods, i.e., FaIE and CPLST, validate the effectiveness
of implicit encoding against explicit encoding. The large margin
based method LM-kNN outperforms FaIE and PLST on all the
datasets except on mediamill and cal500. However, it shows
generally an inferior performance compared to the kernel
version of the two LSDR methods. kernel-CPLST, kernel-FaIE
and LM-kNN outperforms baseline method BR on all the
datasets. FaIE shows better performance than BR on all the
datasets except on the three image datasets across higher
dimension reduction rates. PLST shows better performance than
BR on mediamill and cal500 but shows inferior performance on
the other datasets. The linear version of the proposed FIECE
demonstrates superior performance compared to the other linear
LSDR methods, LM-kNN, and BR on all the five datasets.
kernel-FIECE shows the best average results in terms of both
performance measures on all the datasets across different
dimension reduction rates.

The experimental results demonstrate that using implicit
encoding and considering the generalized cross-entropy loss
function for the reconstruction error of labels is an effective
model, instead of using explicit encoding or SSE cost function
for the reconstruction error. Moreover, extending linear LSDR
methods to kernel version is an effective paradigm including in
our proposed FIECE which yields better results.

V. CONCLUSION

In this paper, we proposed a label space dimension reduction
method FIECE with feature-aware implicit encoding and a
generalized cross-entropy loss function. We learned a code
matrix and a matrix used in the decoding phase by optimizing a
cost function which integrates the prediction error of the latent
space and the reconstruction error of the output space. We used
the generalized cross-entropy loss to balance the model tendency
to truly predict the zero-valued and one-valued labels, while
pervious methods do not attend the imbalance between the
number of zeros and ones in the label vectors. Moreover, we
introduced the kernel version of FIECE to capture more
sophisticated relations between the feature space and the latent
space.

VI. REFERENCES

[1] Grigorios Tsoumakas, loannis Katakis, and loannis Vlahavas, "Mining
multi-label data," in Data Mining and Knowledge Discovery Handbook.:
Springer US, 2010, pp. 667-685.

[2] Jesse Read, Bernhard Pfahringer, Geoff Holmes, and Eibe Frank,
"Classifier chains for multi-label classification," Machine Learning and
Knowledge Discovery in Databases, 2009, vol.5782, pp. 254-269.

[3] Johannes Fürnkranz, Eyke Hüllermeier, Eneldo Loza Mencía, and Klaus
Brinker, "Multilabel classification via calibrated label ranking," Machine
Learning, vol. 73, no. 2, pp. 133-153, Nov. 2008.

[4] André Elisseeff and Jason Weston, "A kernel method for multi-labelled
classification," in Advances in Neural Information Processing Systems
(NIPS), 2001, pp. 681-687.

[5] Yuhong Guo and Dale Schuurmans, "Multi-label classification with
output kernels," in Machine Learning and Knowledge Discovery in
Databases, 2013, vol. 8189, pp. 417-432.

[6] Grigorios Tsoumakas and Ioannis Vlahavas, "Random k-Labelsets for
Multilabel Classification," IEEE Transactions on Knowledge and Data
Engineering, vol. 23, no. 7, pp. 406-417, Sep. 2010.

[7] Yi Zhang and Jeff G. Schneider, "Maximum margin output coding," in
International Conference on Machine Learning (ICML), 2012, pp. 1575-
1582.

[8] Weiwei Liu and Ivor W. Tsang, "Large margin metric learning for multi-
label classification," in Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence, 2015.

[9] Daniel D. Lee and H. Sebastian Seung, "Algorithms for Non-negative
Matrix Factorization," Advances in Neural Information Processing
Systems 13, pp. 556-562, 2001

[10] John Langford, Tong Zhang, Daniel J. Hsu, and Sham M. Kakade, "Multi-
label prediction via compressed sensing," in Advances in Neural
Information Processing Systems 22 (NIPS), vol. 22, 2009, pp. 772-780.

[11] Farbound Tai and Hsuan-tien Lin, "Multilabel classification with
principal label space transformation," Neural Computation, vol. 24, no. 9,
pp. 2508-2542, Sep. 2012.

[12] Yao-nan Chen and Hsuan-tien Lin, "Feature-aware label space dimension
reduction for multi-label classification," in Advances in Neural
Information Processing Systems 25 (NIPS), 2012, pp. 1538-1546.

[13] Zijia Lin, Guiguang Ding, Mingqing Hu, and Jianmin Wang, "Multi-label
classification via feature-aware implicit label space encoding," in
International Conference on Machine Learning (ICML), 2014, pp. 325-
333.

[14] Ashish Kapoor, Prateek Jain, and Raajay Viswanathan, "Multilabel
classification using bayesian compressed sensing." Advances in Neural
Information Processing Systems (NIPS). 2012.

[15] Grigorios Tsoumakas, Eleftherios Spyromitros-Xioufis, Jozef Vilcek, and
Ioannis Vlahavas, "Mulan: A java library for multi-label learning," The
Journal of Machine Learning Research, vol. 12, pp. 2411-2414, 2011.

[16] http://lear.inrialpes.fr/people/guillaumin/data.php

[17] Steven van Vaerenbergh, "Kernel methods for nonlinear identification,
equalization and separation of signals. " Universidad de Cantabria, 2010.
Software available at http://sourceforge.net/projects/kmbox/

[18] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and
Chih-Jen Lin, "LIBLINEAR: A library for large linear classification,"
Journal of Machine Learning Research, pp. 1871-1874, 2008. Software
available at http://www.csie.ntu.edu.tw/~cjlin/liblinear

