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Abstract— In multi-label classification problems, each instance 

can simultaneously have multiple labels. Since the whole number 

of available labels in real-world applications tends to be (very) 

large, the computational cost becomes an important challenge and 

recently label space dimension reduction (LSDR) methods have 

received attention. These methods first encode the output space to 

a low-dimensional latent space. Afterwards, they predict the latent 

space from the feature space and reconstruct the original output 

space using a suitable decoding method. The encoding method can 

be implicit which learns a code matrix in the latent space for the 

available data or explicit which learns a direct encoding function. 

It can be feature-aware which considers predictability of the latent 

space from the feature space or not feature-aware which obtains 

the latent space from only the label space. In this paper, we 

propose FIECE method which is a feature-aware implicit encoding 

method. FIECE uses a generalized cross-entropy loss function for 

reconstruction error of the label space. Since label vectors in these 

problems are usually sparse, we use a parameter in the cost 

function to address the imbalanced classification problem for each 

label. Extensive experiments on several datasets demonstrate 

effectiveness of the proposed method compared to some previous 

methods. 

Keywords- feature-aware encoding; generalized cross-entropy; 

implicit encoding; label space dimension reduction; multi-label 
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I.  INTRODUCTION 

Multi-label classification is an important problem in data 
analysis and has received a lot of attention by researchers 
especially in the last years. In this problem each instance can 
simultaneously have multiple labels. For example, an image can 
have different labels or tags such as “sea”, “boat”, and “beach”. 
Some applications of multi-label classification are automatic 
image annotation, video annotation, text classification, gene 
function prediction, and music genre classification. Until now, 
many methods have been proposed to solve the multi-label 
classification problem. Most of these methods learn a mapping 
from the input space to the output space directly [1], [2], [3], [4], 
[5], [6]. For example, BR [1] is a simple method which learns 
independent binary classifiers for labels. 

In some recent applications of multi-label classification, the 
whole number of available labels tends to be (very) large and the 
label vector of each instance is sparse. Thus, for these 
applications, the computational cost of methods becomes an 
important challenge. One of the paradigms presented to tackle 
multi-label classification problems with a large number of 
possible labels is the label space encoding. Some recent methods 
present a max/large margin formulation for this problem and 
then convert it to a metric learning problem [7], [8]. LM-kNN 
[8] is a scalable state-of-the-art multi-label classification method 
and learns an encoding matrix which transforms the label space 
to an embedded space by solving a large margin formulation 
with constraints on k nearest neighbor instances for each 
instance. Indeed, LM-kNN is a scalable extension of the 
proposed method in [9] in which the constraints for each 
instance are on all other instances. Another class of label space 
encoding methods known as label space dimension reduction 
(LSDR) encode the label space to a low-dimensional latent 
space [10], [11], [12], [13], [14]. Then, they learn predictive 
mappings from the feature space to this latent space rather than 
the original high-dimensional label space at much lower cost. In 
the prediction phase, they first obtain the code vector of each 
instance in the latent space based on its feature vector using the 
learnt mappings. Then, this code vector is decoded to its original 
label vector. The encoding method is called explicit if there 
exists a specific encoding function and called implicit if the code 
matrix (in the latent space) - assuming to be the result of an 
implicit encoding function - is learnt by optimizing a cost 
function. It is called feature-aware if it considers the 
predictability of the latent space from the input space during the 
learning process (and not feature-aware if it doesn’t consider it). 
LSDR methods do not attend that the number of zeros for each 
label is usually much more than ones in multi-label classification 
problems and each instance has a sparse label vector. Moreover, 
they usually consider a simple cost function such as Sum of 
Square Error (SSE) for reconstruction error of the label space 
while the labels have binary values and SSE is not a proper cost 
function for this purpose. 

In this paper, we propose a feature-aware implicit encoding 
method with a generalized cross-entropy loss function which is 
better than sum of square error for classification problems and 



handles imbalance between the number of zeros and ones in 
label vectors.  

The remaining of this paper is organized as follows. Sec-tion 
2 includes definition of multi-label classification problem and a 
review of related works. Section 3 presents the proposed method 
in detail. The setting and results of experiments are included in 
Section 4. Finally, Section 5 includes the paper conclusion. 

II. RELATED WORK 

Assume {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑁  is a set of 𝑁 training instances, where 

𝑥𝑖 ∈ 𝒳 (and 𝒳 = ℝ𝑑) is the 𝑑-dimensional feature vector of the 
𝑖 th instance and 𝑦𝑖 ∈ 𝒴 = {0, 1}𝑄  is the corresponding 𝑄 -
dimensional label vector. 𝑄 is the whole number of available 
labels. The one/zero-valued entries in the label vector of each 
instance indicate its relevant/irrelevant labels. The data feature 
matrix is 𝑋𝑁×𝑑 = [𝑥1, … , 𝑥𝑁]𝑇  and the label matrix is 𝑌𝑁×𝑄 =
[𝑦1 , … , 𝑦𝑁]𝑇. The goal of the multi-label classification problem 
is to find a mapping ℱ: 𝒳 → 𝒴 to predict the label vector of a 
testing instance based on its feature vector. 

Most of the proposed methods to solve the multi-label 
classification problem learn the mapping ℱ from the input space 
to the output space directly. Since computational cost is an 
important challenge in recent applications with large number of 
available labels, LSDR methods have received attention 
recently. These methods consider a low dimensional latent space 
𝒞 ⊂ ℝ𝐿 (𝐿 ≪ 𝑄) between the input space and the output space, 
which can be viewed as an encoding of the output space. 
Afterwards, they learn the predictive mappings ℋ: 𝒳 → 𝒞 from 
the input space to this latent space rather than to the original 
output space. To find the label vector of an unseen instance, they 
first predict the corresponding latent vector based on its feature 
vector using ℋ , then use a decoding function 𝒬: 𝒞 → 𝒴 
followed by a thresholding to obtain its label vector.  

CS [10] is one of the first methods which uses LSDR and 
encodes the label vectors using a small number of random 
projections under the sparsity assumption for label vectors. 
Then, it uses standard algorithms in the decoding phase to 
recover the original label vectors. PLST [11] uses Principal 
Component Analysis (PCA) to transform the label space to a 
low-dimensional latent space. CPLST [12] combines the cost 
function of PCA and error of predicting the latent space from the 
input space using linear regression to propose a feature-aware 
label space dimension reduction method. FaIE [13] considers a 
code matrix in a low-dimensional latent space as a result of an 
implicit encoding function and learns it by optimizing a cost 
function which maximizes both predictability of the latent space 
and recoverability of the output space. This method has a 
feature-aware implicit label space encoding.  

Among LSDR methods, those which have feature-aware 
encoding are more efficient because of considering the 
predictability of latent space [12], [13] from the input space. 
Besides those which have implicit encoding can be more 
effective because no limiting assumption is considered on the 
encoding function [13]. CPLST and FaIE are state-of-the-art 
LSDR methods. 

III. PROPOSED APPROACH 

In this section, we propose a feature-aware implicit encoding 
method which uses a generalized cross-entropy loss function to 
consider the reconstruction error of labels. This loss function has 
a parameter that addresses the imbalance of zeros and ones in 
label vectors. 

A. Proposed FIECE 

To achieve good performance, LSDR methods need to have 
both appropriate mapping ℋ  and decoding function 𝒬  [13]. 
Therefore, the proposed FIECE simultaneously minimizes the 
prediction error of the latent space and the reconstruction error 
of the output space to obtain required parameters including the 
code matrix 𝐶 and the matrix 𝐷 used in the decoding phase. For 
the prediction error of the latent space from the input space, the 
SSE cost function is used and for the reconstruction error of the 
label space from the latent space as mentioned earlier a 
generalized cross-entropy (with a balancing parameter) is used. 
These two cost functions are combined with each other to obtain 
the overall one. After solving the optimization problem and 
learning matrices 𝐶 and 𝐷, a linear ridge regression is utilized to 
learn a prediction matrix 𝑊 that is used to find 𝐶 from 𝑋. To 
predict the label vector of an unseen instance, it first predicts the 
corresponding latent vector based on the feature vector using the 
matrix 𝑊 . Afterwards, it uses the matrix 𝐷  and a nonlinear 
function to obtain the real valued label vector and then uses a 
threshold to obtain its binary valued label vector. 

1) Prediction error of the latent space 
To predict the code matrix 𝐶𝑁×𝐿  from the feature matrix 

𝑋𝑁×𝑑, the transformation matrix 𝑊𝑑×𝐿 is used: 

𝐶̂ = 𝑋𝑊 

 

(1) 

 

The prediction error of reaching the latent space from the 

feature space denoted as 𝐽1(𝐶, 𝐶̂) is computed as follows: 

𝐽1
(𝐶, 𝐶̂) =  ∑ ∑‖𝑐𝑖

(𝑗)
−  𝑐𝑖

(𝑗)
‖

2
𝐿

j=1

𝑁

𝑖=1

  

= ‖𝐶 − 𝑋𝑊‖𝐹
2       (2) 

 

2) Reconstruction error of output space 
To decode the label matrix 𝑌  from the code matrix 𝐶 , a 

transformation matrix 𝐷  is utilized. To use the cross-entropy 
loss function as a more desirable loss function for classification 
problems, a logistic sigmoid function is needed to be applied on 
the resulting matrix as follows: 

𝑌̂ =  𝜎(𝜇𝐶𝐷) 

 

(3) 

 

where 𝜎(𝑥) =
1

1+𝑒𝑥𝑝 (−𝑥)
 and 𝜇  is a parameter that is used to 

control steepness of the sigmoid function. The reconstruction 
error of the output based on a generalized cross-entropy loss 
function is computed as follows: 



𝐽
2
(𝑌, 𝑌̂) = − ∑ ∑ (𝛽 𝑦

𝑖
(𝑗) 𝑙𝑛(𝑦̂

𝑖

(𝑗))  

𝑄

𝑗=1

𝑁

𝑖=1

+  (1 −  𝑦
𝑖
(𝑗)) 𝑙𝑛(1 −  𝑦̂

𝑖

(𝑗)))

+ 𝛾‖𝐷‖𝐹
2  

 

(4) 

 

where 𝑦𝑖
(𝑗)

 and 𝑦̂𝑖
(𝑗)

 denote the 𝑗th label in the corresponding 

original and predicted label vector of the 𝑖 th instance 

respectively. 𝛾 is a regularization parameter that is used  as the 
coefficient of the regularization term on the matrix 𝐷 and ‖. ‖𝐹 
is the Frobenius norm of a matrix. 𝛽  is balancing parameter 
which is defined as the proportion of the mean number of zeros 
in training label vectors and the mean number of ones in this 
vectors, by: 

𝛽 =  

1
𝑁

∑ (𝑄 − ‖𝑦𝑖‖1)𝑁
𝑖=1

1
𝑁

∑ ‖𝑦𝑖‖1
𝑁
𝑖=1

 

 

(5) 

 

where ‖. ‖1 denotes the 𝐿1 norm of a vector. Since the number 
of ones in label vectors in the multi-label classification problems 
is low, considering this parameter causes equal importance in 
predicting zeros and ones in label vectors. If we do not consider 
this parameter, the model tends to predict the zero-valued labels 
right to cause less error in 𝐽2 , and pays less attention to 
predicting the one-valued labels. 

Assuming 𝐶 = [𝑐1, 𝑐2, … , 𝑐𝑁]𝑇  and 𝐷 = [𝑑1, 𝑑2, … , 𝑑𝑄] , by 

substituting (3) in (4), the following cost function is obtained: 

𝐽2
(𝑌, 𝑌̂) = − ∑ ∑ (𝛽 𝑦

𝑖
(𝑗) 𝑙𝑛 (𝜎(𝜇𝑐𝑖

𝑇𝑑𝑗))  

𝑄

𝑗=1

𝑁

𝑖=1

+  (1

−  𝑦
𝑖
(𝑗)) 𝑙𝑛 (1 −  𝜎(𝜇𝑐𝑖

𝑇𝑑𝑗)))

+ 𝛾‖𝐷‖𝐹
2  

 

(6) 

 
Equation (6) can be written using a new notation as follows: 

𝐽2
(𝑌, 𝑌̂) = − ∑ ∑ (𝛽 𝑌𝑖,𝑗 ln (𝜎(𝜇𝐶𝑖,.𝐷.,𝑗))

𝑄

𝑗=1

𝑁

𝑖=1

+ (1

−  𝑌𝑖,𝑗) ln (1 −  𝜎(𝜇𝐶𝑖,.𝐷.,𝑗)))

+  𝛾‖𝐷‖𝐹
2  (7) 

 

where for an arbitrary matrix 𝐴, 𝐴𝑖,𝑗 denotes the entry in the 𝑖th 

row and the 𝑗th column of the matrix 𝐴. 𝐴𝑖,. shows the 𝑖th row 

and 𝐴.,𝑗 denotes the 𝑗th column of this matrix. 

3) The proposed cost function 
By integrating the prediction error of the latent space and the 

reconstruction error of the output space (with the balancing 

parameter 𝛼 for the former), the overall cost function is defined 
as: 

𝐽(𝐶, 𝐷, 𝑊) =  𝛼 𝐽1(𝐶, 𝐶̂) + 𝐽2(𝑌, 𝑌̂) (8) 

𝐽(𝐶, 𝐷, 𝑊) =  𝛼 ‖𝐶 − 𝑋𝑊‖𝐹
2

− ∑ ∑ (𝛽 𝑌𝑖,𝑗 ln (𝜎(𝜇𝐶𝑖,.𝐷.,𝑗))

𝑄

𝑗=1

𝑁

𝑖=1

+ (1

−  𝑌𝑖,𝑗) ln (1 −  𝜎(𝜇𝐶𝑖,.𝐷.,𝑗)))

+  𝛾‖𝐷‖𝐹
2  
 

(9) 

4) Minimizing the cost function 
First we obtain the optimum value of the matrix 𝑊, which is 

appeared only in the first statement: 

∂

∂𝑊
‖𝐶 − 𝑋𝑊‖𝐹

2 = 0  

⇒    𝑊 = (𝑋𝑇𝑋)−1𝑋𝑇𝐶 
 

(10) 

 

By substituting (9) in 𝐽1(𝐶, 𝐶̂) we obtain 

𝐽
1
(𝐶, 𝐶̂) = 𝐓𝐫(𝐶𝑇(𝐼 − Δ )𝐶) (11) 

Δ = 𝑋(𝑋𝑇𝑋)−1𝑋𝑇 
 

(12) 

 

where 𝐓𝐫(. ) denotes the trace of a matrix. The matrix 𝑋𝑇𝑋 is 
assumed to be invertible which in practice we add a small value 

𝜖 to its diagonal elements to ensure the matrix is invertible. 

By replacing (10) in (8), the cost function 𝐽 will be a function of 
𝐶 and 𝐷. Since 𝐽(𝐶, 𝐷) is nonlinear relative to both matrices, the 
gradient descent (with learning rate 𝜂) is used to learn them in 
which we need these derivations: 

∂𝐽1(𝐶, 𝐶̂)

∂𝐶
= 2(𝐼 − Δ )𝐶 

 

(13) 

∂𝐽2(𝐶, 𝐶̂)

∂𝐶𝑖,𝑘 
= − ∑ 𝜇𝐷𝑘,𝑗 (𝛽 𝑌𝑖,𝑗 (1 − 𝜎(𝐶𝑖,.𝐷.,𝑗))

𝑄

𝑗=1

− (1 − 𝑌𝑖,𝑗)𝜎(𝐶𝑖,.𝐷.,𝑗)) 

(14) 

∂𝐽1(𝐶, 𝐶̂)

∂𝐷
= 0 (15) 

∂𝐽2(𝑌, 𝑌̂)

∂𝐷𝑘,𝑗  
= − ∑ 𝜇𝐶𝑖,𝑘 (𝛽 𝑌𝑖,𝑗 (1 − 𝜎(𝐶𝑖,.𝐷.,𝑗))

𝑄

𝑗=1

− (1 − 𝑌𝑖,𝑗)𝜎(𝐶𝑖,.𝐷.,𝑗)) + 2 𝛾𝐷 

(16) 

 

5) Learning regression functions to predict the latent space 
After learning the code matrix 𝐶 , we use a linear ridge 

regression to learn matrix 𝑊 to predict the matrix 𝐶 from the 
matrix 𝑋 according to training data, which will be used in the 
prediction phase. The prediction matrix 𝑊 can be found as in 
(10). 

6) Prediction phase  



To predict the label vector of an unseen instance based on its 
feature vector, first we predict its code vector 𝑐𝑡𝑒𝑠𝑡  using 
prediction matrix 𝑊. Then, we use a decoding function with the 

learnt matrix 𝐷 and replace 𝐶 by [𝑐𝑡𝑒𝑠𝑡]𝑇
 in (3) to obtain a real 

valued output vector. Afterwards, we use a threshold to obtain 
the corresponding label vector with binary values. 

B. Kernel Version 

Similar to the previous works [12], [13], we use the kernel 
trick to capture more sophisticated relations between the feature 
space and the latent space. Assume each feature vector 𝑥𝑖  is 
mapped to a new feature vector 𝜃𝑖 using a mapping function and 

𝛩 is the new feature matrix with 𝑁 rows. 𝜅(𝑥𝑖 , 𝑥𝑗) =  𝜃𝑖
𝑇𝜃𝑗  is 

the kernel function and 𝐾 = 𝛩𝛩𝑇  is the kernel matrix. 
According to the representor theorem, the mapping function 
from the new feature space to the latent space has the form 𝑊′ =
 𝛩𝑇𝐵 , where 𝐵𝑁×𝐿  is the coefficient matrix. In this case, the 
prediction error of the latent space is as follows: 

𝐽1
(𝐶, 𝐶̂) = ‖𝐶 − 𝛩𝑊′‖

𝐹

2
  

                = ‖𝐶 − 𝛩𝛩𝑇𝐵‖𝐹
2   

           = ‖𝐶 − 𝐾𝐵‖𝐹
2  

 

(17) 

In this formula, we can assume that the feature matrix 𝑋  is 
replaced by 𝐾  and the prediction matrix 𝑊  is replaced by 𝐵 
compared to the linear case. Thus, the solution for this case is 
obtained by the same replacements. That means Eq. (12) for 
calculating Δ which is used in the cost function of linear case, is 
changed to: 

Δ = 𝐾(𝐾𝑇𝐾)−1𝐾𝑇 (18) 

  
and all the other equations remain unchanged. Similarly, we add 

small value 𝜖 to all entries on the diagonal of the matrix 𝐾 to 
make it invertible. 

In the prediction phase, we use the kernel ridge regression 
instead of the linear ridge regression to find the latent space from 
the input space. 

IV. EXPERIMENTS 

We evaluate the performance of the proposed FIECE on a 
variety of multi-label datasets and compare its results with other 
methods using three evaluation measurements.  

A. Experimental Setup 

1) Datasets 
The experiments are performed on five multi-label datasets 

with a relatively large number of possible labels. Table 1 

presents properties of these datasets. The first two datasets, 
mediamill, and cal500 are downloaded from Mulan [15]. The 
second three datasets, corel5k, espgame, and iaprtc12 are 
prepared image datasets downloaded from [16] for which image 
features using different methods have been extracted. For these 

three datasets, we use 100 features extracted using DenseHue 
method. Table 1 represents properties of these datasets. 

2) Performance Measures 
There are several performance measures to evaluate multi-

label classification methods and compare them with each other. 
We use label-based micro-F1 and example-based example-F1 
which are the most popular and commonly used measures 
recently [8]. 

3) Baseline Methods 
To validate our method and compare it with other methods, 

we take BR [1], LM-kNN [8], PLST [11], kernel-CPLST [12], 
FaIE [13] and kernel-FaIE.  

4) Settings 
We report the results of LSDR methods including PLST, 

CPLST, FaIE, and our proposed FIECE by varying dimension 
reduction rate: 

Dimension reduction rate =  𝐿/𝑄  (19) 

 
in the range {0.1, 0.2, 0.3, 0.4, 0.5}. Following the settings in 
[13], for datasets with more than 5000 instances, we select 5000 
instances of them randomly to reduce computational cost. 
Afterwards, we divide each dataset into 5 parts evenly and 
randomly and perform 5 runs for each method corresponding to 
these parts. In each run, one of the parts is considered as a test 
part and the others are considered as train parts. Then, we 
average over the results which are obtained using the mentioned 
evaluation measures and report their mean and standard 
deviation. For methods that are extended to kernel version, we 
use the Gaussian kernel and set the smoothing parameter as 
twice the average of the Euclidean distance between each pair of 
feature vectors for the corresponding part of the dataset. For the 
kernel ridge regression, we use functions implemented in [17]. 
If a method has parameter(s), we divide the training instances 
into 5 parts randomly and use the first four parts for training and 
the last one for validation. Then, we consider a range of values 
for each parameter and use grid search to select the ones which 
cause the best results on validation data. Other settings for each 
method are as follows: 

 FIECE (our method): The parameter 𝜇  used in the 
decoding phase is set to 0.01. This parameter is used to 
smooth the output of the decoding function, so the 
prediction error obtained using the generalized cross-
entropy loss function becomes computationally 
feasible. In other words, it prevents the prediction error 

from being infinite. The regularization parameter 𝛾 is 
selected from {0.01, 0.05, 0.1, 0.5} and the balancing 

parameter 𝛼 is chosen from {0, 0.05, 0.1, 0.5}. The 
learning rate in gradient descent method is set to 0.1. 

The small-valued parameter 𝜖 is set to 10−4. 
 BR: We use package LIBLINEAR [18] to learn 

independent binary classifiers and use L2-regularized 
logistic regression in the training function. To obtain 
binary classification results we use 0.5 as a threshold.  

 FaIE: The balancing parameter 𝛼  is selected from 
{10−1, 100, … , 104}  and similar to FIECE the 

corresponding parameter 𝜖 is set to 10−4. The code is 

Dataset Domain 
# of instances 

(𝑵) 
# of features 

(𝒅) 
# of labels 

(𝑸) 

mediamill video 43907 120 101 

cal500 music 502 68 174 

corel5k image 4999 100 260 

espgame image 20770 100 268 

TABLE I.  PROPERTIES OF DATASETS. 



received from the authors, but is changed in some cases 
to be comparable with other methods. 

 LM-kNN: According to the setting in [8], the number 
of nearest neighbors is set as 𝑘 = 10 . The code is 
received from the authors. 

B. Experimental results 

 The average results of all comparison methods on all five 
datasets with different dimension reduction rates are represented 
in terms of micro-F1 and example-F1 in Fig. 1 and Fig. 2 
respectively. Note that for BR and LM-kNN, the results are 
repeated for different dimension reduction rates to make them 
comparable with LSDR methods. The experimental results of 
both linear and kernel version of LSDR methods are reported in 

Figure 2.    Examole-F1 results of all methods on all datasets with different dimension reduction rates. 

Figure 1.   Micro-F1 results of all methods on all datasets with different dimension reduction rates. 



the figures. Since we found that linear PLST and linear CPLT 
have the same results, we reported the results of the earlier 
method. According to the obtained results, we can see that the 
linear FaIE outperforms linear PLST on all the datasets. kernel-
FaIE has similar but slightly better performance than kernel-
CPLST. Kernel version of both methods yields better 
performance than their linear versions except on cal500 which 
yields similar performance. The comparison results of the two 
LSDR methods, i.e., FaIE and CPLST, validate the effectiveness 
of implicit encoding against explicit encoding. The large margin 
based method LM-kNN outperforms FaIE and PLST on all the 
datasets except on mediamill and cal500. However, it shows 
generally an inferior performance compared to the kernel 
version of the two LSDR methods. kernel-CPLST, kernel-FaIE 
and LM-kNN outperforms baseline method BR on all the 
datasets. FaIE shows better performance than BR on all the 
datasets except on the three image datasets across higher 
dimension reduction rates. PLST shows better performance than 
BR on mediamill and cal500 but shows inferior performance on 
the other datasets. The linear version of the proposed FIECE 
demonstrates superior performance compared to the other linear 
LSDR methods, LM-kNN, and BR on all the five datasets. 
kernel-FIECE shows the best average results in terms of both 
performance measures on all the datasets across different 
dimension reduction rates. 

The experimental results demonstrate that using implicit 
encoding and considering the generalized cross-entropy loss 
function for the reconstruction error of labels is an effective 
model, instead of using explicit encoding or SSE cost function 
for the reconstruction error. Moreover, extending linear LSDR 
methods to kernel version is an effective paradigm including in 
our proposed FIECE which yields better results. 

V. CONCLUSION 

In this paper, we proposed a label space dimension reduction 
method FIECE with feature-aware implicit encoding and a 
generalized cross-entropy loss function. We learned a code 
matrix and a matrix used in the decoding phase by optimizing a 
cost function which integrates the prediction error of the latent 
space and the reconstruction error of the output space. We used 
the generalized cross-entropy loss to balance the model tendency 
to truly predict the zero-valued and one-valued labels, while 
pervious methods do not attend the imbalance between the 
number of zeros and ones in the label vectors. Moreover, we 
introduced the kernel version of FIECE to capture more 
sophisticated relations between the feature space and the latent 
space. 
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