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Abstract—In this paper two objectives are followed; one is to 

illustrate the capability of Fuzzy Wavelet Neural Network 

(FWNN) in modeling; and the other is to propose a self-tuning 

PID controller based on this model. The controller is constructed 

by a FWNN structure combined with a PID controller. Gradient 

descent algorithm is used to accomplish tuning rules. The 

proposed method is applied for a nonlinear system, which is a 

liquid level system. The capability of FWNN in the modeling of 

nonlinear system by a few rules and susceptibility of the 

proposed controller will be shown by simulation. The 

convergence analysis of the algorithm will be done using 

Lyapunov theorem. It will be shown that the proposed method 

would increase the speed of tracking while having very little 

steady state error which is due to the high accuracy of fuzzy 

wavelet neural network. 

Keywords- fuzzy wavelet neural network; gradient descent 

algorithm; self-tuning PID controller; liquid level system 

I.  INTRODUCTION 

Recently, soft computing and Fuzzy Wavelet Neural 
Networks (FWNNs) have been widely used in many 
application areas [1-8]. The FWNN which is a combined 
structure based on fuzzy rules includes wavelet functions in its 
consequent parts. This combined structure can avoid inherent 
limitations of each isolated methods. Wavelet transform can 
describe local details of the signals. Also neural networks with 
self-learning capability cause to increase the accuracy of the 
model. On the other hand fuzzy logic can decrease the 
complexity of the data and is suitable to be used in systems 
with uncertainty. Reference [1] proposed the first fuzzy 
wavelet network that was based on multi resolution analysis of 
wavelet transforms and fuzzy concepts used to approximate 
nonlinear functions. In [1] using Orthogonal Least Square 
(OLS) algorithm to select important wavelets has decreased the 
difficulties of selecting wavelets. Reference [2] has been 
suggested another FWNN structure to identify and control of 
nonlinear dynamic plants. In that work, the number of fuzzy 
rules and initial parameters of wavelets are determined by 
clustering algorithm. A fuzzy neural network model which is 
dynamic and uses wavelet functions in its processing units has 
been proposed in [8]. In that research, IF part of the fuzzy rules 
are comprised of Mexican Hat wavelet membership functions 
and THEN part of the rules are differential equations of linear 
functions. Also, in order to find optimal model parameters for 

nonlinear system modeling and/or control applications, a 
gradient based algorithm Broyden-Fletcher-Goldfarb-Shanno 
(BFGS) method has been used. 

Using soft computing methods has directed to implement 
several types of adaptive controllers [9-13]. A Radial Basis 
Function (RBF) network was applied to find the optimal values 
of PID parameters in [9]. Random parameters and 
corresponding amounts of cost function earned from closed 
loop system were used as training data. Then RBF set the 
parameters fits to minimum cost function. A PID control based 
on wavelet neural networks identification and tuning was 
described in [10]. In that control scheme, two wavelet neural 
networks were used for identification and tuning online. The 
parameters of PID controller were the output of the second 
employed wavelet network. Therefore, it is needed to obtain 
suitable amounts of parameters as training data. In [11] self-
tuning adaptive PID controller was proposed using a dynamic 
wavelet network. The control scheme was tested with a second 
order system with input saturation. The controller finally has 
tracked the desired signal; however, it seems from simulation 
results to take long time. In spite of good performance with 
noise contamination, the cost function minimized for control 
purpose was the difference between desired output and 
estimated output of wavelet network whereas in practice the 
error between desired output and actual output should be 
minimized. Reference [13] has been presented a multivariable 
self-tuning PID controller based on WFNNs for a class of 
nonlinear systems and the self-tuning PID controller is derived 
via a generalized predictive performance criterion. 

In this paper, a nonlinear model which is a liquid level 
system is considered. At the first step, the system is modeled 
using FWNN. This network could identify the unknown model 
very well using few numbers of parameters. Then based on the 
obtained model a self-tuning PID controller is designed. The 
controller’s parameters are optimized using simple gradient 
descent method. The tuning process could be begun without 
any trial and error unlike most of researches in this area. The 
control performance is well especially in steady state error and 
speed of tracking. These two stages are simulated. It could be 
seen that the combination of FWNN and PID controller would 
lead to a well performance and high speed controller. Indeed it 
allows us using the capability of FWNN in control of nonlinear 
dynamic systems. 

mailto:m.davanipour@shirazu.ac.ir
mailto:r.dadkhah@shirazu.ac.ir
mailto:shabani@shirazu.ac.ir


This paper is organized as follows: Section II gives the 
structure of FWNN. Section III represents the liquid level 
system. In Section IV the self-tuning PID controller and the 
convergence analysis is proposed. In the next section, 
simulation results have been provided. Section VI includes 
conclusion remarks. 

 

II. FUZZY WAVELET NEURAL NETWORK 

The FWNN as depicted in Fig. 1 is constructed by some 
fuzzy rules [6]: 

𝑅𝑖: 𝐼𝑓 𝑥1𝑖𝑠 𝐴1
𝑖 , 𝑎𝑛𝑑 𝑥2𝑖𝑠 𝐴2

𝑖 , … . , 𝑎𝑛𝑑 𝑥𝑞𝑖𝑠 𝐴𝑞
𝑖   

𝑇ℎ𝑒𝑛 𝑦𝑖 = 𝑤𝑖 ∑ 𝜓𝑖𝑗(𝑥𝑗)
𝑞
𝑗=1   



in which 𝑥𝑗  (1 ≤ 𝑗 ≤ 𝑞) is the 𝑗𝑡ℎ  input and 𝑦𝑖  (1 ≤ 𝑖 ≤ 𝑐) is 

the output of the local model for rule 𝑅𝑖, which is equal to the 
linear combination of a finite set of wavelets. The output signal 
of each WNN is calculated as 

𝑦𝑖 = 𝑤𝑖 ∑ 𝜓𝑖𝑗(𝑥𝑗)
𝑞
𝑗=1    

where 𝑤𝑖  is the weight coefficient from the inputs and 𝑖𝑡ℎ 
output and 𝜓𝑖𝑗  is a wavelet family defined in the following 

form 

 

 

Figure 1.  The structure of FWNN  

 

𝜓𝑖𝑗(𝑥𝑗) = 𝜓 (
𝑥𝑗−𝑏𝑖𝑗

𝑎𝑖𝑗
)                  𝑎𝑖𝑗 ≠ 0    

In (3), 𝜓𝑖𝑗(𝑥)  is obtained from a single mother wavelet 

function by dilations and translations (𝑎, 𝑏). 

According to above descriptions the output of FWNN is 
calculated as 

𝑦̂ =
∑ 𝜇𝑖𝑦𝑖

𝑐
𝑖=1

∑ 𝜇𝑖
𝑐
𝑖=1

 𝑤ℎ𝑒𝑟𝑒 𝜇𝑖 = ∏ 𝐴𝑗
𝑖(𝑥𝑗)

𝑞
𝑖=1   

for 𝑖 = 1, 2, … , 𝑐  and 𝑗 = 1, 2, … , 𝑞 . Here 𝑐  is the number of 
fuzzy rules and 𝑞 is dimension of input vector. 

   Here the Gaussian membership functions have been 
selected to describe the linguistic terms. The reason for 
selecting Gaussian membership function is that it is able to 
approximate triangular and trapezoidal membership functions 
[6]. 

𝐴𝑗
𝑖(𝑥𝑗) = exp [−

(𝑥𝑗−𝑐𝑗
𝑖)

2

(𝜎𝑗
𝑖)

2 ]   

in which 𝜎𝑗
𝑖 and 𝑐𝑗

𝑖 determine the center and the half-width of 

corresponding membership function. Mexican Hat wavelet 
function which is a symmetric function and commonly applied 
in FWNN is used in consequent parts of each fuzzy rule. 

𝜓(𝑥) =
1

√|𝑎|
(1 − 2𝑥2) exp (−

𝑥2

2
)   

 

III. MODELING OF NONLINEAR LIQUID LEVEL SYSTEM 

WITH FWNN 

A tank liquid level system is shown in Fig. 2 in which 𝑄𝑖𝑛 

and 𝑄𝑜𝑢𝑡 are the maximum liquid flow rates in 
𝑚3

𝑠
 for input and 

outlet, respectively [12]. 

The controlled liquid flow rate is given as 

𝑞𝑖𝑛 = 𝑄𝑖𝑛 sin(𝜃(𝑡))          𝜃(𝑡)𝜖 [0,
𝜋

2
]   

The output liquid flow rate is such as  

𝑞𝑜𝑢𝑡 = 𝑎𝑜𝑢𝑡√2𝑔ℎ(𝑡)   

The descriptive equation of the system is 

ℎ(𝑡) = ℎ(0) +
1

𝐴
∫ (𝑞𝑖𝑛(𝜏) − 𝑞𝑜𝑢𝑡(𝜏))𝑑𝜏

𝑡

0
  

 



 
Figure 2.  A simple nonlinear liquid level system 

 

in which, ℎ is the output variable in 𝑚 which is the level of the 
liquid, 𝑎𝑜𝑢𝑡 = 0.01 𝑚2  is the surface area of the outlet, 𝐴 =

1 𝑚2 is the surface of the tank  and 𝑔 = 9.81
𝑚

𝑠2.  

In this section, a FWNN has been used for modeling of this 
liquid level system. For this purpose a FWNN constructed by 
only two fuzzy rules could be able to model this nonlinear 
system perfectly. Fuzzy rules are constructed according to (1). 
It is a two inputs and one output network. In this case 𝜃 and 
𝑞𝑜𝑢𝑡 have been considered as inputs and ℎ as output. WNN is 
also a two input one output structure. Initial wavelet parameters 
presented in (3) have been obtained by clustering algorithm. 
The others have been random selected. After that the learning 
process begins through which the optimum amounts of all 
parameters ( 𝑎, 𝑏, 𝑐, 𝜎, 𝑤 ) will be determined by gradient 
descent algorithm. Details of clustering and gradient descent 
methods can be found in many reports [14-17]. 

 

IV. SELF-TUNING PID CONTROLLER BASED ON FWNN 

In the previous section modeling of a system by FWNN 
was discussed. In the next step, it is necessary to control that 
system using a PID controller based on the obtained FWNN 
model. To reach the final self-tuning controller, the tuning rules 
should be exploited. The following description tries to get these 
rules. 

A.  Controller Design 

The control loop tuning is the adjustment of control 
parameters (𝑃, 𝐼, 𝐷) to reach optimum values. The structure of 
closed loop system which is a combination of identifier 
network and self-tuning PID controller is shown in Fig. 3. In 
that figure, 𝑒𝑖𝑑  is the identification error. The auto tuner 
computes the optimum values of control parameters by 
minimizing the bellow cost function: 

𝐸 =
1

2
∑ (𝑦𝑑(𝑘) − 𝑦̂(𝑘))

2𝑇
𝑘=1   

in which 𝑦𝑑(𝑘)  is the desired output and 𝑦(𝑘)  is the actual 
output of the system. 

The PID controller is as follows: 

 

 

Figure 3.  The structure of self-tuning PID controller 

 

𝑢(𝑘) = 𝑢(𝑘 − 1) + 𝑃[𝑒(𝑘) − 𝑒(𝑘 − 1)] + 𝐼𝑒(𝑘)  

+𝐷[𝑒(𝑘) − 2𝑒(𝑘 − 1) + 𝑒(𝑘 − 2)]  


In the above relation, 𝑒(𝑘)  is the error produced by 
deviation of the actual output from the desired output. The cost 
function includes 𝑃 , 𝐼  and 𝐷  which are selected as control 
parameters. So, the goal is finding these parameters to 
minimize the cost function in (10).  Here, for this purpose 
gradient descent algorithm is applied.  

The optimization formula is such as follows: 

Δ𝑃(𝑘) = −𝜂𝑃
𝜕𝐸

𝜕𝑃
  

ΔI(𝑘) = −𝜂𝐼
𝜕𝐸

𝜕𝐼
  

Δ𝐷(𝑘) = −𝜂𝐷
𝜕𝐸

𝜕𝐷
  



In that for example 𝜂𝑃  indicates the learning rate for 𝑃 

parameter and 
𝜕𝐸

𝜕𝑃
 is 

𝜕𝐸

𝜕𝑃
= − ∑ 𝑒(𝑘)𝑇

𝑘=1
𝜕𝑦̂

𝜕𝑃
  

where 𝑒 is the control error and 𝑦̂ is the output of the model. 

By substituting derivation we have 

𝜕𝐸

𝜕𝑃
= − ∑ 𝑒 (

𝜕𝑦̂

𝜕𝑢

𝜕𝑢

𝜕𝑃
)𝑇

𝑘=1   

In that, 
𝜕𝑦̂

𝜕𝑢
 is computed using relations (1-4) and 

𝜕𝑢

𝜕𝑃
 

according to (8).   

Then we would have 

𝑦̂ =
∑ (∏ 𝐴𝑗

𝑖 (𝑥𝑗)
𝑞
𝑗=1 )𝑐

𝑖=1  𝑤𝑖 ∑ 𝜓𝑖𝑗(𝑥𝑗)
𝑞
𝑗=1

∑ (∏ 𝐴𝑗
𝑖 (𝑥𝑗)

𝑞
𝑗=1

)𝑐
𝑖=1

  



Here 𝑥 is the network’s input (𝑢). The derivation of (15) is 
such as 

𝜕𝑦̂

𝜕𝑢
=

𝜕𝑚

𝜕𝑢
𝑛−

𝜕𝑛

𝜕𝑢
𝑚

𝑛2   

where 

𝑚 = ∑ (∏ 𝐴𝑗
𝑖(𝑥𝑗)

𝑞
𝑗=1 )𝑐

𝑖=1  𝑤𝑖 ∑ 𝜓𝑖𝑗(𝑥𝑗)
𝑞
𝑗=1   

𝑛 = ∑ (∏ 𝐴𝑗
𝑖(𝑥𝑗)

𝑞
𝑗=1 )𝑐

𝑖=1   



Then we have: 

𝜕𝑢

𝜕𝑃
(𝑘) =

𝜕𝑢

𝜕𝑃
(𝑘 − 1) + 𝑒(𝑘) − 𝑒(𝑘 − 1)  

B. Convergence Analysis 

The controller in (11) can stabilize the closed loop system. 
The proof is done by applying the Lyapunov stability theorem. 

Consider the Lyapunov function such as bellow 

𝑦𝑝 = 𝐸𝑝  

where is the error between the desired output 𝑦𝑑 and the output 
of the closed loop system 𝑦  at epoch 𝑝  .The deviation of 
Lyapunov function because of the learning procedure is 

Δ𝑉𝑝 = 𝑉𝑝+1 − 𝑉𝑝 = [𝐸𝑝+1
2 − 𝐸𝑝

2]  

Furthermore 

𝐸𝑝+1 = 𝐸𝑝 + 𝛥𝐸 
   
⇒  𝐸𝑝+1 

2 = 𝐸𝑝
2 + 𝛥2𝐸 + 2𝐸𝑝𝛥𝐸  

Thus 

𝛥𝑉𝑝 = Δ𝐸𝑝 [𝐸𝑝 +
1

2
Δ𝐸𝑝]  

The updating formula for parameter 𝐼 (for example) in 
gradient descent algorithm can be expressed as 

𝐼𝑝+1 = 𝐼𝑝 − 𝜂
𝜕𝐸𝑝

𝜕𝐼
  

Also, deviation of the error function because of changing in 
the parameter 𝐼, can be written as 

Δ𝐸𝑝 = 𝐸𝑝+1 − 𝐸𝑝 ≈
𝜕𝐸𝑝

𝜕𝐼
Δ𝐼  

Therefore 

𝛥𝑉𝑝 =
𝜕𝐸𝑝

𝜕𝐼
𝐸𝑝 + 𝜂 (

𝜕𝐸𝑝

𝜕𝐼
)

2

  

It is known from the Lyapunov stability theorem that if 𝑉𝑝 

is positive and Δ𝑉𝑝 is negative, the stability will be guaranteed. 

Therefore, the convergence condition is obtained such as 
following 

𝛥𝑉𝑝 < 0 
    
⇒  𝜂

𝜕𝐸𝑝

𝜕𝐼
< 𝐸𝑝

   
⇒ 𝜂 <

𝐸𝑝
𝜕𝐸𝑝

𝜕𝐼

  

This is the condition for convergence. 

V. SIMULATION RESULTS 

In this section the results of applying FWNN for modeling 
and control of the liquid level system have been proposed. 

A. Modeling Section 

The input data set is gathered in Fig. 4 which is the changes 
of control valve’s flap angle given in (7).  Fig. 5 shows the 
output of FWNN model and compares it with the output of 
mathematical model. As it is seen this FWNN using only two 
fuzzy rules has modeled this nonlinear system very well. Fig. 6 
depicts the differences between the mathematical and FWNN 
model. The fuzzy rules used for modeling are such as (1) in 
which 𝑥1  and 𝑥2  are 𝑞𝑖𝑛  and 𝑞𝑜𝑢𝑡 , respectively. 𝐴 is according 
to (5) and 𝜓 is according to (6). 

 

Figure 4.  The input signal representing the changes of the valve angle as the 

control variable 

 

Figure 5.  Agreement comprasion of mathematical model output (dashedline) 

and FWNN model output  (solid line). 
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Figure 6.  Difference between the output of mathematical and FWNN models 

 

B. Control Section 

After modeling, the self-tuning PID controller based the 
FWNN model proposed in the previous section has been used 
to force the system for tracking of unit step signal. The initial 
values of PID controller’s parameters have been set to zero. 
Therefore, it needs no previous guess to start. The updating 
process is completed just for 100 epochs. The result of this 
section is shown in Fig. 7. The performance of the controller is 
well especially in steady state manner. In addition, the speed of 
tracking is acceptable. Fig. 8 depicts the controller’s 
parameters tuning curves. The figure shows that the 
parameter’s setting to suitable values quickly happens then 
variations are almost insensible. For more investigations on the 
performance of the controller, a staircase step input is applied 
to the system. The result is illustrated in Fig. 9. Also, the 
performance of the controller is checked with an input 
disturbance. A half of the unit step is considered as an input 
disturbance. It has been applied to the plant entrance at 𝑡 =
100 𝑠. Fig 10 shows the response of system in the present of 
the disturbance. It can be seen that the controller is still good 
performing and the system output tracks the setpoint. The 
comparison of proposed method with some other methods is 
given in Table I. In that table the PID based FWNN is the 
proposed method here. The fuzzy based ANFIS model is the 
one studied in [12]. The PID based NN (Neural Network) is a 
PID controller based on the neural network model using 19 
nodes and MLP (Multi-Layer Perceptron). The PID based 
ANFIS model is also a PID controller based the ANFIS model 
which is almost similar to the one in [12]. Based on Table I, the 
proposed method yields to less settling time, despite the 
considerable lower number of rules and parameters. Although, 
using of proposed method yields to more overshoot in 
comparison with fuzzy based ANFIS [12], but the reduction of 
overshoot in fuzzy based ANFIS [12] has been achieved in the 
cost of much more parameters and rules. 

 

Figure 7.  Performance of the controller in the response to the unit step 

setpoint 

 

 

Figure 8.  Controller parameters tuning curves 

 

 

Figure 9.  Performance of the controller in the response to the staircase unit 

step setpoint 

0 500 1000 1500 2000

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

Time (s)

E
r
r
o

r
 o

f 
F

W
N

N
 m

o
d

e
l 

(m
)

0 50 100 150 200 250
0

0.5

1

1.5

Time (s)

L
e
v

e
l 

(m
)

 

 

System Output

Setpoint

0 50 100 150 200 250
0

5

10

K
P

0 50 100 150 200 250
0

2

4

K
I

0 50 100 150 200 250
-0.5

0

0.5

Time (s)

K
D

0 50 100 150 200 250
-0.5

0

0.5

1

1.5

2

2.5

Time (s)

L
e
v

e
l 

(m
)

 

 

System Output

Setpoint



 

Figure 10.  Performance of the controller in the response to an input 

disturbance. The amplitude of the applied disturbance to the entrance of the 

system at 𝑡 = 100 𝑠  is 0.5 . 

 

TABLE I.  COMPARISON OF PROPOSED METHOD WITH OTHER METHODS 

Method 

 

Number 

of rules 

 

Number of 

parameters 

Settling 

Time (s) 

Overshoot 

(percentage) 

PID based 

FWNN 
2 18 60 22 

Fuzzy based 

ANFIS [12] 
25 175 80 10 

PID based NN ---- 73 100 40 

PID based 

ANFIS 
25 175 90-110 38 

 

VI. CONCLUSION 

Due to the capability of FWNN in modeling of nonlinear 
unknown dynamic system, it was applied for modeling of a 
nonlinear liquid level system. Only two fuzzy rules could be 
able to model this nonlinear system. By using the obtained 
model, a self-tuning PID controller was proposed. The auto 
tuner enables the controller to usage the accuracy of FWN 
modeling which in turn increase the speed of tracking. It was 
seen that using a gradient descent algorithm with low number 
of iterations could result in the optimum values of the control 
parameters. The tuning rule began without any trial and error 
unlike most of researches in this area. The simulation part 
illustrated these results. 
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