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Abstract – Wireless sensor networks have found many 
applications because of their facility for remote information 
monitoring and processing. One of the main applications of 
sensor networks is detection of an event occurrence. In these 
applications, a fusion center decides about an event occurrence 
based on the data of sensors. Here, the goal is to detect event 
occurrence correctly while avoiding its false detections. To reach 
this, either a sparse network of expensive precise sensors or a 
dense network of cheap sensors may be used. This paper 
attempts to examine these cases. It is shown that using a 
relatively dense network of cheap sensors may satisfy design 
parameters. In addition, it is shown that how a suitable decision 
fusion rule can reduce design costs. 
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I. INTRODUCTION 

Wireless sensor networks (WSN) are networks of wireless 
nodes capable of sensing, processing and communication. The 
flexibility nature of such networks makes them suitable for 
implementing many applications. However, energy and 
processing limitations of wireless nodes impose design 
restrictions. Implementation of classical problems – such as 
detection, estimation and target tracking – in a distributed 
manner while considering WSN limitations has been a hot 
research topic during recent decades [1, 2]. 

Detection is either the main task or one of the main tasks 
of WSNs in many applications. In detection applications, 
sensors observe a region of interest (ROI) and send either raw 
or processed data to a fusion center (FC) in which the final 
decision is taken. The final result of such network would be 
either event occurrence – referred to as hypothesis H1 – or no 
event occurrence – referred to as hypothesis H0. 

Due to energy limitations and wireless medium, sensors 
have to send less data. Rago et. al. in [3] have suggested 
sensors to send data only when it is informative. The extreme 
limit is the distributed detection scheme where sensors decide 
about the even occurrence locally and send their decisions to 
the FC just upon event detection. Thus, sensors may inform 
the FC about their decision during only one bit. Then, the FC 
takes the final decision by fusing the received decisions from 
sensors. There are many practical issues; however, the two 
basic problems are optimum local decision rules and optimum 
decision fusion rule. 

Assuming that sensors’ observations are statistically 
independent given each hypothesis, the local decision rules 
are shown to be a likelihood ratio test (LRT) [4, 5]. Chair and 
Varshney in [6] have obtained an optimal decision fusion rule 
where each sensor’s decision is weighed based on its detection 

performance. Since computing each sensor’s detection 
performance is practically very challenging, sensors’ 
decisions may be treated equally and hence the counting 
fusion rule – proposed by Niu et. al. in [7] – may be exploited. 
In counting rule, the number of positive decisions (i.e. 
decisions implicating event occurrence) are counted and 
compared to a threshold. The threshold is computed based on 
the desired system’s false alarm rate. It has been shown that 
the counting rule is a robust fusion rule even when considering 
effects of communication channels [8]  

Recently, the weighted decision fusion (WDF) rule has 
been proposed in [9] in which the bandwidth is used more 
efficiently. In WDF, sensors estimate their sensing signal-to-
noise ratio (SNR) after detecting the desired event and inform 
the FC about that if the measured SNR is more than a pre-
specified value. In counting rule, receiving a bit from a node 
means event detection by that node. In WDF, the value of that 
bit is meaningful as well. For example, when network nodes 
are forced to send only one bit upon event detection, a ‘1’ bit 
may be used to inform the FC about detecting the event with 
a high SNR value while a ‘0’ bit means detection with low 
SNR (low confidence). Hence, the FC would weigh more on 
the ‘1’ bits and sensors’ decision wouldn’t be treated equally 
anymore. 

From the view of design costs, a common dilemma is 
choosing between a dense network of low-cost sensors and a 
sparse network of expensive precise sensors. In this paper, this 
issue is addressed. Note that the problem of nodes deployment 
is not considered here, though it affects the network 
performance [10]. 

The paper is organized as follows. The problem and its 
solutions are discussed in section II. In section III, simulation 
results are shown. Finally, the paper is concluded in section 0. 

II. PRECISION AND DECISION FUSION RULES 

One of the main challenges of WSN implementations is to 
select appropriate sensors. Each sensor type covers an 
extensive range of prices. As an instance of WSN applications, 
the quality of agricultural crops as well as water consumption 
could be significantly improved by exploiting WSNs. In this 
application of WSNs – often referred to as precision 
agriculture –, soil moisture sensors are required. However, 
there are several kinds of soil moisture sensors in market 
ranging their prices from just 1$ (several unbranded in market) 
to over hundreds of dollars (e.g. the products of Acclima and 
Enviroscan). 

On the other hand, it is shown that distributed detection 
performs optimally in large network sizes [11-13]. In other 
words, one may use large number of nodes in order to reach 
the optimal performance. This paper attempts to address the 



following question: which one is better: a dense network of 
low-cost sensors or a sparse network of expensive precise 
sensors? 

A. Precision and accuracy 

Precision and accuracy are two barely distinguishable 
terms. However, they are technically different. Accuracy 
refers to the closeness of the measurement to the true value 
while precision is the degree to which repeated measurements 
under unchanged conditions show same results [14]. In other 
words, a sensor measurement drift from its true value could be 
considered as its accuracy while its measurement statistical 
standard deviation (i.e. its sigma) could be considered as its 
precision. 

This paper studies the effect of sensors precision on 
detection performance of a network. Effects of sensors’ drift 
and the necessity to calibrate sensors will be studied as a future 
work. 

B. Counting fusion rule 

In counting fusion rule, network nodes decide locally and 
send a bit to the FC when they detect the target event. The FC 
makes the final decision using the decision fusion rule given 
by: 
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where ui is the binary decision of node i, N is the total number 
of network nodes and T is the threshold of the FC which is 
computed based on a desired false alarm rate of the system. If 
all nodes maintain a same false alarm rate (i.e. 

, 1, 2,...,
if fp p i N  ), then the network’s false alarm 

probability, PF, when using the counting fusion rule, is given 
by: 
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in which the operator x    gives the largest integer number 

less than x. Thus, system design involves computing the 
threshold T which is a constant. 

 

C. Weighted Decision Fusion (WDF) 

In counting rule, all decisions are treated equally. 
However, the decisions of nodes which are in the 
neighborhood of event are more important. In fact, it has been 
shown in [15] that the optimal decision fusion rule would be 
based on the decision of the nearest node to the event. 

In WDF, a simple method of weighting has been proposed. 
Under AWGN with variance σ2 in sensors performing binary 
hypothesis test based on M observations, the decision rule is 
given by [16]: 
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with ijy  being the jth observation of sensor i and i is the 

detection threshold of sensor i. Then, nodes estimate the SNR 
of their measurements, Si, using the maximum likelihood 
estimation (MLE) method: 
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At the next step, nodes quantize their estimated SNRs and 
send them to the FC if they detect the target event and also if 
the estimated SNR is more than a pre-specified value. Finally, 
the FC makes the final decision based on the following fusion 
rule: 
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where  is the detection threshold of the FC, iS  is the 

quantized SNR of sensor i, A is the set of nodes that have 
already transmitted data to the FC and nA is the cardinality of 
A. Here, the detection threshold of the FC is a function of nA 

(i.e. 1 2 1 2,Aa n a a a R    ). 

Clearly, the number of quantization levels of SNR is a 
function of the number of bits used for sending data. After 
having the quantization levels specified, designing a decision 
fusion system based on WDF involves setting a1 and a2 for a 
desired system’s false alarm rate and optimum detection 
performance. The required relations for calculating WDF 
detection performance have been obtained in [9]. One may use 
either a full space search or an evolution algorithm such 
genetic algorithm (GA) for obtaining optimum values of a1 
and a2. 

III. SIMULATION RESULTS 

In this section, detection performance of a WSN in an area 
of 100 m2 in different number of nodes – ranging from sparse 
to dense network – and with different sensor precisions is 
simulated. The simulations are performed using both counting 
rule and WDF decision methods. In simulations, PF ≤ 0.01 is 
considered and the optimum design parameters for the 
optimum detection performance are chosen. Communication 
channels are modeled as binary symmetric channels (BSC). 
Nodes are assumed to be uniformly randomly deployed in the 
ROI. Also, nodes decide based on 10 measurements, i.e. M = 
10. 

Fig. 1 shows that how sensor precision affects detection 
performance of a network. Here, the communication error is 
assumed to be 0.1. The fluctuations in the curves is because of 
changing the FC threshold. Detection probability rises when 
the network size increases in a fixed FC threshold; however, 
the FC threshold should be changed in order to maintain the 
desired PF ≤ 0.01. It could be seen that using less number of 
more precise sensors results in better detection performance. 
For example, less than 20 sensors with 2 = 0.1 are needed in 
order to reach PD at least equal to 0.8 while more than 50 
sensors with 2 = 5 should be exploited for that detection 



probability. Thus, selecting appropriate sensors depends on 
the prices of sensors as well as wireless nodes. 

Another interesting result of Fig. 1 is depicting importance 
of clustering in WSNs. Often, network nodes are arranged in 
clusters in order to simplify routing. In addition, clustering 
suggests energy saving since a node of each cluster – referred 
to as the cluster head (CH) – aggregates data of other nodes of 
that cluster and forwards the aggregated data to the FC. 
Aggregating data usually results in more precision (i.e. less ). 
Thus, Fig. 1 introduces improving of detection performance 
of WSNs as another advantage of clustering. 

 

 
Fig. 1. The system’s probability of detection vs. network size (N) in different 
precision values () of sensors. The system’s false alarm rate is 0.01. Nodes 
make decision based on 10 measurements (M = 10) and the communication 
error probability is 0.1. 

Fig. 2 shows a comparison between detection performance 
of counting rule and WDF in different network sizes. The 
simulation conditions are the same as in Fig. 1 except that here 
a high communication error rate of 0.2 has been considered. 
In simulating WDF, two quantization levels 1 and 15 have 
been used. If a node detects the event and its estimated SNR 
is less than 15, it transmits a ‘0’ bit to the FC. If it detects the 
event with and SNR more than 15, it sends a ‘1’ bit to the FC. 

 

 
Fig. 2.Comparison of detection performance of two different decision 

fusion rules in in different precision values () of sensors. The system’s 
false alarm rate is 0.01. Nodes make decision based on 10 measurements 

(M = 10) and the communication error probability is 0.2. 

Fig. 2 shows how design cost is affected by decision fusion 
strategy. As an example, while more than 60 sensors are 
required for reaching PD more than 0.96 when counting rule is 
used, this number decreases to less than 35 sensors when 
implementing WDF method. However, designing a detector 
network based on counting rule is very simple. 

IV. CONCLUSION 

This paper studied detection performance of WSNs in 
different network sizes and with different values of sensor 
precision. It was shown that less number of precise sensors is 
required for reaching a specified detection performance; 
however, the costs of sensors and wireless nodes define the 
density of network. In other words, using dense network of 
low-cost sensors may be more economical in many 
applications. On the other hand, clustering a dense network of 
inexpensive sensors results in improving precision in each 
cluster and improves detection performance of the network. In 
addition, it was shown that using more appropriate decision 
fusion rule could significantly decrease design costs. 
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