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Abstract— the brain rhythms defined by specific frequency-

bands of electroencephalography (EEG) signal are generally 

thought to represent diverse cognitive processes which wax and 

wane with sub-second resolutions at different parts of the cortex. 

Furthermore, single-trial analysis of EEG is believed to show 

more realistic pictures of ongoing and event-related activities of 

the brain with millisecond resolution. Here, we present a 

nonparametric multiple change-point detection and estimation 

method for analysis of single-trial EEG recorded during auditory 

and visual oddball tasks. In a simple attention task like oddball, 

the frontal cortex of the brain is responsible for distinguishing 

and responding appropriately to target and standard events. 

With sub-second resolution at the frontal cortex, we show that 

the α-band activity changes according to “inhibition timing” 

hypothesis and the β-band activity is in line with “maintaining 

the status quo” hypothesis. 

Keywords— electroencephalography; auditory/visual oddball 

task; single-trial analysis; change-point analysis; (α, β)-band 

powers; frontal cortex. 

I.  INTRODUCTION 

On-going brain activity alternates in response to 

endogenous and exogenous events. Electroencephalography 

(EEG) is one of the foremost tools to explore non-invasively 

this activity in human brain. Most notably, it is suitable for 

measuring the activity over the superficial layer of the scalp - 

cerebral cortex - with millisecond resolution. The cerebral 

cortex plays a major role in all higher cognitive processes like 

attention, perception, decision-making, and planning. In a 

simple attention task like auditory/visual oddball, the most 

relevant part of the brain which distinguishes target events 

from standard ones and plans the desired action, is frontal 

cortex. While traditional event-related potential can capture 

the average brain activity reliably, single-trial analysis of EEG 

signal recently has gained interest due to its ability to measure 

realistically the endogenous wax and wane of brain activity 

inherent to each trial [1] [2]. 

Furthermore, it is believed that the frequency-band 

components of the EEG signal have important implications 

about different cognitive processes. EEG is normally divided 

to five frequency-bands: δ-band (0.5-4 Hz), θ-band (4-8 Hz) 

α-band (8-14 Hz), β-band (14-30 Hz), and γ-band (30-100 

Hz). The amplitudes (powers) and phases of these frequency-

band components carry information about cognitive processes 

in the brain. As an instance, the α-band power which is the 

most prominent EEG component particularly over the 

posterior part of the brain is generally thought to correlate 

with inhibiting and idling state of the cortex. Based on 

“inhibition timing” hypothesis, the α-band activity represents 

suppression and selection, two important aspects of attention 

[3]. On the other hand, based on a relatively recent hypothesis, 

the β-band activity whose magnitude is more prominent in 

sensorimotor cortex is believed to signal “maintaining the 

status quo” in different parts of the cortex [4]. 

In this study, we develop a nonparametric method for 

single-trial analysis of EEG in the general framework of 

change-point analysis [5] [6]. While change-point analysis is a 

well-established method in signal processing; it has rarely 

used for EEG single-trial analysis. Moreover, our method is 

best suited for multidimensional data with unknown number 

and location of change-points using minimum distribution 

assumptions. Change-point estimation is based on U-statistics 

and hierarchical clustering with bisection approach for its 

computational efficiency [6]. We use this method to divide the 

multidimensional EEG signal of the electrodes of frontal 

cortex to different temporal windows and then calculate the 

single-trial relative powers of α and β-band components. Our 

results provide support for α-band “inhibition timing” and β-

band “maintaining the status quo” hypotheses. 

II. MATERIALS AND METHODS 

The EEG data we use is a part of the simultaneous EEG-

fMRI data collection described in [7]-[9] but we reproduce 

much of the relevant information here for ease of reading and 

refer the reader to those previous studies for further details. 

The EEG dataset (combined with BOLD fMRI data) is freely 

available via the OpenfMRI data repository 

(https://openfmri.org/dataset/ds000116). 

ASD was partly funded by the Iran’s National Elites Foundation. 
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A. Auditory and Visual Oddball Paradigms 

Seventeen subjects (six females; mean of 27.7 years; range 

of 20–40 years) participated in three runs of each of the 

auditory and visual oddball paradigms. The 375 (125 per run) 

total stimuli per task were presented for 200 ms each with a 2–

3 s uniformly distributed variable inter-trial interval (ITI) and 

target probability of 0.2. For the visual task, the target was a 

large red circle (3.45° visual angle) and the standard was a 

small green circle (1.15° visual angle), both on iso-luminant 

gray backgrounds. For the auditory task, the standard stimulus 

was a 390 Hz pure tone and the target sound was broadband 

“laser gun”. Because our study is about task-related cognitive 

states, subjects were asked to respond to the target stimuli, 

using a button press with the right index finger on a button 

response pad. 

B. EEG Data Acquisition 

The EEG was recorded using an EEG system with 

differential amplifier and bipolar EEG cap. The cap was 

composed of 36 Ag/AgCl electrodes including left and right 

mastoids, arranged as 43 bipolar pairs. This oversampling of 

the electrodes ensured that the data forms a complete set of 

electrodes even when there is a need to discard noisy channels. 

The original data is from a simultaneous EEG-fMRI 

experiment and thus, the EEG signal is contaminated with 

gradient and Ballistocardiogram (BCG) artifacts. To enable 

removal of the gradient artifacts in our offline preprocessing, 

the 1-kHz-sampled EEG signal was synchronized with the 

MR-scanner clock at the start of each of 170 functional image 

acquisitions. 

C. EEG Data Preprocessing 

We followed closely the standard offline preprocessing of 

EEG described in [2] [7]-[9] using MATLAB (MathWorks). 

First, we removed the gradient artifacts by subtracting the 

mean EEG signal across all functional volume acquisitions 

from the initial EEG signal. We then applied a 10 ms median 

filter to remove any residual spike artifacts [10]. Secondly, we 

used the following digital Butterworth filters in the form of a 

linear-phase finite impulse response (FIR) filters: a 1Hz high 

pass filter to remove direct current drift, 60 and 120 Hz notch 

filters to remove electrical line noise and its first harmonic, 

and a 100 Hz low pass filter to remove high-frequency 

artifacts not associated with neurophysiological processes. 

BCG artifacts share frequency content with EEG activity and 

existing BCG removal algorithms cause loss of signal power 

in the EEG. Therefore, we performed single-trial analysis 

based on the change-point analysis method on the event-

related potential before BCG artifacts removal. However, to 

isolate the N100, P200, and P300 components (Fig. 1) and 

compute the scalp topographies, BCG artifacts were removed 

from the EEG data using a principal components analysis 

method [2] [11]. First, the data were low pass filtered at 4 Hz 

to extract the signal within the frequency range in which BCG 

artifacts are observed and then the first two principal 

components were calculated. The projection of channel 

weightings corresponding to those components subtracted out 

from the broadband data. These BCG-free data were then re-

referenced from the 43 bipolar channels to the 34 electrodes 

space to isolate the N100, P200, and P300 components (Fig. 

1). By visual inspection, trials containing motion or blink 

artifacts and also those with incorrect responses, were 

discarded from both auditory and visual datasets. 

D. EEG Change-point Analysis 

We defined the stimulus-locked -1000 ms to 1000 ms EEG 

epoch as a trial. We chose this interval because it ensures no 

overlap between adjacent trials due to ITI and also provides 

pre-stimulus potential for subsequent frequency-band analysis. 

We combined all target trials across three runs of each one of 

the auditory and visual tasks for each subject (at most 75 trials 

for each subject and task). We did the same for the standard 

trials (at most 300 trials for each subject and task). 

We are interested in task-related EEG response which is 

the brain activity for distinguishing target from standard 

events and subsequent appropriate action. The EEG signal of 

the electrodes at the frontal cortex is believed to indicate this 

activity. As a result, we used the referencing matrix of each 

subject to transfer the EEG signal from the 43 bipolar 

channels to the 34 electrodes space and then chose 7 frontal 

cortex electrodes (Fp1, Fp2, AF3, AF4, F3, Fz, F4 in 

international 10-20 system) for change-point analysis. 

We performed change-point analysis on average event-

related potential obtained from 7 frontal cortex electrodes 

independently for each subject, task (auditory/visual), and trial 

type (target/standard). By doing this, we increased the signal-

to-noise ratio of task-related EEG potential. However, our 

subsequent single-trial analysis based on frequency-band 

components was rested on individual trials. Also, to decrease 

the computational demand of our change-point analysis, we 

averaged the EEG signal over 10 ms sliding window, so 

instead of having EEG epochs with 2000-point length (1000 

Hz), we had epochs with 200-point length (100 Hz) covering 

stimulus-locked -1000 ms to 1000 ms interval. We think this 

does not change the accuracy of our change-point analysis 

(particularly considering the low signal-to-noise ratio of the 

EEG datasets obtained in the MR environment), while it 

substantially increases the computational efficiency (Our 

change-point method runs at O(kT
2
); k is the number of the 

change-points and T is the sample-length of a signal). 

Our change-point formulation has closely followed a 

recently developed nonparametric multiple change-point 

detection and estimation method which has just one 

assumption behind its applicability; the multidimensional 

signal must have µ-th absolute moment for some µ є (0,2) [6]. 

By combining it with hierarchical estimation (bisection 

method) and significance testing (permutation), we efficiently 

and reliably isolated up to 10 change-points from our EEG 

epochs. 



In the following formula, µ = 1 and T = 200 (the length of 

our EEG epoch) and Zκ is a point in a 7-dimensional EEG 

epoch time-series, κ є (1,200). In (1), we vary κ along an EEG 

epoch and then move τ along the resultant temporal window, τ 

є (1,κ). As a result, we have two separate time-series with two 

probability distributions: Fx for Xτ and Fy for Yτ(κ). Based on 

this definition, we calculate 
^

E  from (2) and 
^

Q  from (3). 

According to (4), if τ is a change-point, then Fx is not equal to 

Fy and 
^

Q  must go to infinity. Using (5), by spanning an EEG 

epoch with κ and τ, we are able to find the maximum possible 

value for 
^

Q  and the corresponding estimated change-point, τ. 

For more complete description, please refer to [6]. 
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We performed this estimation hierarchically to find the 

desired number of significant change-points in our EEG 

epochs based on (6) (see Figs. 2-3 for average results across 

subjects). Also, to test the significance of our change-point 

detection, we performed permutation test. We permuted the 

signal values on our EEG epoch time-series (length = 200 

points) 100 times for each subject, task, and trial type 

separately. Then, we ran the same hierarchical change-point 

detection and estimation procedure by using (6) for each 

permutation run (see Fig. 4 for average results across 

subjects). Finally, we compared the distribution of 
max

^

Q  for 

permuted EEG epochs with the original EEG epochs to verify 

the significance of our detected change-points. 

E. EEG (α, β)-band Single-trial Analysis 

For single-trial analysis of EEG, we considered EEG α and 

β-band components due to their relevance to our simple 

paradigm and minimum contamination with BCG artifacts. 

After calculating the change-points of average event-related 

potential for each subject, task, and trial type separately; we 

returned to our target and standard single-trials and divided the 

stimulus-locked -1000 ms to1000 ms trial interval to distinct 

temporal windows each one of them starts at -1000 ms and 

ends at a change-point (CP). (We did this instead of 

considering the time-span between two consecutive change-

points, because the change-points were close to each other and 

the time-gaps were not sufficient to let us reliably calculate the 

powers of α and β-band components.) 

Afterward, we calculated average α and β-band powers for 

the temporal windows of each one of the trials, and the 

average broadband (BB) power (0-100 Hz) of the same trial. 

By dividing the α and β-band powers of all temporal windows 

of a trial to the broadband power of the same trial by using (7) 

and obtaining the relative powers of α and β-band 

components, we simultaneously achieved two objectives: 1) 

We normalized the α and β-band powers of the temporal 

windows of a trial on the same ground. 2) We removed any 

baseline effects of EEG signal so we were able to combine all 

the relative powers across all the trials for each subject, task, 

and trial type separately. 
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Furthermore, to have a summary statistics of α and β-band 

relative powers across all temporal windows and subjects (but 

independently for each task and trial type), we divided the 

2000-point length stimulus-locked EEG epoch to 20 equal 

bins each one has 100-point length. Then we placed the α and 

β-band relative powers of all subjects in one of those bins 

based on their temporal windows’ positions. Afterward, for 

each bin, we calculated the mean and standard error of the 

mean separately for α and β-band relative powers. We 

presented these results in Figs. 5-8 independently for each task 

and trial type. 

 

 

 

 

 

 



 

 

 

 

 

 

 

Fig. 1. Traditional average event-related potential of Pz and Fz electrodes. 

III. RESULTS AND DISSCUSION 

All subjects responded with high accuracy and speed. For 

the auditory task, 98.3 ± 2.0 % of targets was correctly 

detected with 404.1 ± 58.3 ms reaction time (RT) and for the 

visual task 98.4 ± 3.1 % of targets was correctly detected with 

397.2 ± 38.9 ms RT. 

A. Traditional Event-related Potential 

The average (across subjects) event-related potential (ERP) 

which spans stimulus-locked -1000 ms to 1000 ms interval for 

Pz and Fz electrodes were displayed in Fig. 1 (independently 

for each task and trial type). P300 component which is an 

endogenous potential elicited in the process of attention, 

categorization, and decision-making is more prominent in the 

parietal sites between 300 ms to 500 ms. On the other hand, 

N100 and P200 are more prominent in the frontal sites. They 

are all visible for average ERP of auditory and visual target 

trials in Fig. 1. 

B. EEG Change-point Analysis 

The average locations (across subjects) of the first 10 

change-points in -1000 ms to 1000 ms stimulus-locked 

interval is displayed in Fig. 2 (independently for each task and 

trial type). The first change-point of target trials for both tasks 

is approximately matched with the behavioral response (RT). 

In Fig. 3, the 
max

^

Q  values of the detected change-points were 

plotted. The plot has a plain trend starting from large values 

and decreasing gradually. Also, in Fig. 4, the 
max

^

Q  values of 

the change-points of permuted trials were plotted and, as 

expected, they have significantly lower 
max

^

Q values compare 

to Fig. 3. The results clearly show that the detected change-

points are significant for both tasks (auditory/visual) and both 

trial types (target/standard). 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The 10 more significant change-points and their standard errors. 

 

 

 

 

 

 

 

Fig. 3. The 
max

^

Q values of the change-points and their standard errors. 

 

 

 

 

 

 

 

Fig. 4. The 
max

^

Q values of permuted trials and their standard errors. 

C. EEG (α, β)-band Single-trial Analysis 

We summarized the average results across all temporal 

windows and subjects (but independently for each task, trial 

type, and frequency-band component) in Figs. 5-8. 

In Figs. 5 and 7, for auditory and visual target trials 

respectively, the α-band activity is higher at the beginning and 

gradually decreases as the change-point moves to the right in 

the stimulus-locked EEG epoch. This is in accordance with the 

“inhibition timing” hypothesis [3] which states that the α-band 

power is negatively correlated with the brain activity; it is 

higher at the pre-stimulus interval but it decreases as the 

frontal cortex gets engaged with task-related decision-making 

regarding the response to the target trials. 

  

 

 



 

 

 

 

 

 

Fig. 5. α and β-band relative powers of auditory task target trials. 

 

 

 

 

 

 

Fig. 6. α and β-band relative powers of auditory task standard trials. 

The β-band activity is also in agreement with the “maintaining 

the status quo” hypothesis [4] which states that the β-band 

power is lower when we expect some cognitive processes 

happen which change the status quo. Here, in response to the 

target trials, the frontal cortex, which is the center of executive 

functions in the brain, gets active to coordinate the proper 

action. 

On the other hand, for auditory and visual standard trials in 

Figs. 6 and 8 respectively, we observe the opposite trend. 

Although, they start with relatively high pre-stimulus α and β-

band activity, they decrease and again increase around 200 ms 

to 400 ms post-stimulus which is the time when the brain is 

already processed the stimulus and the appropriate decision is 

made. This is again in line with the “inhibition timing” 

hypothesis for α-band power and the “maintaining the status 

quo” hypothesis for β-band power; in the standard trials, the 

frontal cortex is not involved in coordination of any action and 

it just needs to keep the status quo which is the situation 

without any behavioral response. 

In conclusion, our developed change-point method and 

frequency-band components’ single-trial analysis are able to 

provide additional evidence for two relevant hypotheses in the 

literature related to α and β-band activities; they show how the 

brain rhythms in the task-related region of the cortex 

coordinate temporally with sub-second resolution. 
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Fig. 7. α and β-band relative powers of visual task target trials. 

 

 

 

 

 

 

Fig. 8. α and β-band relative powers of visual task standard trials. 
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