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Abstract—This paper presents a Markov Chain Monte Carlo 
(MCMC) method for multitarget tracking within raw 
measurements. We derive the optimal proposal density so that 
the raw and unthresholded measurements could be used to 
generate approximating particles appropriately. However, 
because the optimal proposal density has exponential complexity, 
we apply the Gibbs sampler, the well-known MCMC method, to 
sample from the optimal proposal density and relieve sampling 
burden. Simulation results show that our strategy for using the 
Gibbs sampler could reach to a good compromise between 
accuracy and computation expense. 

Keywords-Optimal proposal; Gibbs particle filter; raw 
measurements. 

I.  INTRODUCTION  

Particle filtering, a promising branch of numerical 
nonlinear inference named Monte Carlo filtering , has attracted 
attention of researchers in the multitarget tracking context 
recently [1-5]. It has been used as a unified procedure to render 
both the filtering and data association implicitly [6,7], where 
each particle is a representative of both target states and data 
association as well. Particle filter also makes it possible to cope 
with non-thresholded measurements. As for particle filtering 
point of view, one of the most important issues is the selection 
of suitable proposal density. 

First, we derive the optimal proposal density for tracking 
multiple targets within raw measurements. However, the 
problem is that to draw sample from the optimal proposal 
density one needs to enumerate all possible hypotheses of the 
target cell occupations. Therefore, the computational burden 
grows at an exponential rate with the number of targets. That 
makes it to be included in the NP-hard problem category and 
therefore there would be no way to devise a method for 
reducing the complexity to the polynomial orders except by 
some suboptimal solutions. 

This paper uses two methods, namely neighborhood cells 
gating and Gibbs sampling to relieve the difficulty of sampling 
from the proposal density. This makes a compromise, required 
to reach, between accuracy of sampling and the burn in time 
selection.  

Remaining parts of this paper are organized as follows. 
Motion dynamics and sensor model are introduced in Section 

II. In Section III, optimal proposal density is derived for the 
model described in Section II and also two aforementioned 
strategies i.e. neighborhood cells gating and Gibbs sampler, are 
introduced to relieve the computation burden. Simulations 
proving efficiency of the Gibbs sampler are shown in section 
IV. Finally, section V contains a brief conclusion. 

II. MOTION DYNAMICS AND SENSOR MODELING 

In a multitarget environment, consider presence of t  
targets at time t. It is aimed to estimate posterior density of the 
joint state based on noisy observation. The joint state t  is 
built by concatenation of all individual states 
together 1 2( , , , )

t

t t tt
 s s s . The position components of the 

target construct the vector while its velocity components in 
x and y directions construct the vector tv so that t  and tv  

create the space of the target state ts , as [ , , , ]t tt t
x y

t x v y vs   . For 
constant velocity model the evolution process of the target 
motion dynamics has the Gaussian density [8] 

 1 1| ~ (·; , )t t t s s Fs Q  (1) 
where  ; ,α m  is the Gaussian probability density 

function which is evaluated at α with mean m  and covariance 
matrix Θ , and 
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where nI indicates  the n n  identity matrix, denotes the 
Kronecker product, T stands for the length of the time step and 
 denotes  the normalized variance of the  velocity 
perturbation. 

The observation area is divided into y x  cells where for 
each cell measurement is taken independently. Therefore, for 
the whole raw measurement t , the total likelihood ratio  
could be written as the product of all cell likelihood function 
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where t contains cell measurements 

, , 1, , , 1, ,t
i j xyo i j     .  

The multitarget reception intensity pertaining to the cell 
with the two-dimensional indices { , }i j is added to the radio 



frequency thermal noise of the sensor and the result is then 
converted down to baseband. As a result, ,

t
i jo  is the envelope of 

that addition and has a Rician distribution as 
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     (4) 
where 2

v is the measurement noise variance and 0I is the 
modified Bessel function of the first kind and order zero. 

Assuming the sensor response within each cell is uniform 
and vanishes outside [6], , ( ) n Ai j tT   where A is a known 
return amplitude of a target assumed fixed and n is the number 
of targets inserted in the{ , }i j cell. However, a method to deal 
with unknown and varying number of targets with in 
unthresholded measurements can be found in [9]. Let  be the 
index of cell having the row and column subscripts i and j 
respectively then  1 ,1 ,1· yy xj i j i          . 

 

III. OPTIMAL PROPOSAL AND GIBBS PARTICLE FILTER 

The objective of the multitarget tracking algorithm is to 
estimate the posterior density of the joint state which is 
computed recursively by updating the equation 
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Unless in linear-Gaussian process conditions, the recursion 
in (5) cannot be computed analytically and approximating 
methods should be utilized such as Monte Carlo filtering.  

Particle filter [3], one of the most popular classes of the 
Monte Carlo methods, approximates the posterior density at 
each time by means of a set of particles where each particle 
possesses a sample i,t , drawn from the support area of the 
posterior, and a weight i,tw to approximate the posterior density 
as  

    1: ,

1

|
p

t t t t i

i




 p    i,tw
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 (6) 

where  represents the usual Dirac delta function. 

Each sample in (6) is drawn from an easy to sample 
function named the proposal density , ,1: 1( | , )i t i t tq    . [10] 
suggests using an auxiliary variable to help simulate from 
particles associated with large predictive likelihoods. That way, 
we hope that the particle weights would have less variance than 
the standard SIR method. This leads to higher survival rate and 
better usage of particle resources. The method is named 
Auxiliary Variable Particle Filter (AV PF) and described here. 

Using approximation of (6), 1 1: 1( | )t t p   is represented 

by mixture density components as  

 1 1: 1 1 1 1 ,

1
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 (7) 

In the AV particle filter method, an auxiliary variable i is 
first simulated by some probability ( | )ti  , called the first 

stage weights, to select the most probable mixture component 
in (7). 

Based upon the selected component density, a sample ,i t is 
drawn using the proposal density , 1( | ),t i t tq    and then it is 
give the so-called second-stage weight as 
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The second stage weights in AV PF are used to correct the 
occurred discrepancies resulted by the first stage weights. 
Finally, after the resampling step, one would have evenly 
weighted particles. 

As brought up by [11], the optimal proposal density, in the 
sense of minimizing the particle weights variance, has to take 
the form of  

 , 1 , 1, ,( | ) ( | )t i t t t i t t q p       (9) 
And as a results, ( | )ti  would have the form of 
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So by rewriting Bayesian equation as follows 
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the second stage weights in (8) would also be unity.  

Regarding [10], that is a direct consequence of full 
adaption, so the resampling step could be done before the 
sampling step.   

 

A. Optimal proposal distribution for pixelized observation 

 
It is possible to derive the optimal proposal for the motion 

dynamic and sensor model defined in Section 2. The position 
vector of a sample is drawn over the observation area and other 
cases are of no interest to the algorithm. It means that if the 
observation area is large enough, (1) can be expanded as 
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where  is the index of the cell occupied by the  target,  is 

the position spread of the th cell and t
    means that the 

position vector of th target points towards the th cell area at 
time t.  

The mixture density component in (12) is a truncated 
Gaussian density defined as 
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where ( )t
  is the function equal to unity only when 

the th target is located in the th cell at time t, and zero 
elsewhere. Furthermore, 
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In the case of the joint state t , according to independent 
target priors and (12), the following can be written 
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Note that (15) can be considered as the product 
of truncated Gaussian distributions. As we discussed earlier, 
regarding to (15), for a given number of 
targets  and x y  measurement cells, there 

are  x y


  different possible combinations of targets cell 

occupations. For each combination, the total likelihood 
function (3), possesses a unique value. In other words, (3) can 
be written as  
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Then by rewriting (11) and integrating out over t , we find 
the first stage weights to be equal to 
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Moreover, using (11), according to the (16),(15), the 
optimal proposal sampler (OPS) density expression can be 
expanded in the following way 
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B. Computation Burden of the Optimal Proposal Density 

Suppose that the sample size is equal to p particles, and 

then the optimal proposal sampler has to compute p first stage 
weights. For every first stage weight in (17), 

the  x y


  different likelihood functions should be evaluated. 

It clearly gives signs of facing with a challenging NP-hard  
problem. We utilize two major approaches to relieve the 
computation burden: Neighborhood cells Gating  and Gibbs-
particles. 

C. Neighborhood cells Gating 

Until now, it was assumed that each target, regardless of its 
current position, can move towards each of 
the x y  measurement cells at the next time. If we just stick in 
probable cells (in terms of their occupation by each target at the 
next time), the computational expense will be decreased. It 
aims to select cells that their probability of covering 
the th target is more than a threshold  . Those cell indices 
comprise the set ,t as 

  , ,1, , :x yt jj         

For the simulation scenario in this paper, a value of 0.02 
for  is suitable to reach an acceptable compromise between 
conflicting requirements. 

D. Gibbs-particles 

The gating procedure dramatically reduces the computation 
burden of algorithm, although the order of exponential growth 
rate dictated by the number of targets still remains. 

However, it is an interesting idea to update the 
joint  targets posterior density by updating separate target 
posteriors one by one without any assumption on the 
independency among the likelihood functions of targets. Our 
approach uses a particular single-component Metropolis-
Hastings method named as Gibbs sampler as a family of 
Markov Chain Monte Carlo (MCMC) to update the target 
posteriors sequentially. Using a MCMC approach is a 
promising method to deal with MTT problem [11-14].  

In this paper, contrary to what has been done in [14], Gibbs 
sampler does not approximate a posterior distribution, and 
neither does it serve as a means to rejuvenate degenerate 
samples after an assumed resampling step. The Gibbs sampler 
is just utilized here to draw samples from the optimal proposal 
as a means to relive computation expense. For each 
particle , 1i t , Gibbs sampler uses the kernel satisfying the 
reversibility condition to construct an irreducible and aperiodic 
chain in an iterative way that the chain converges to the 
invariant distribution which is in fact the optimal proposal 
density in (18).  

At each time step t, MCMC goes through it iterations 
where in each iteration the new move (the new sample  ) 

proposed by the proposal density 1:
1( | , )t t

q    which is 

accepted by the acceptance probability 1;( )t
   . The point is 

that for efficient computation, single-component Metropolis-
Hastings method updates the components of joint state t  in 
sequential steps instead of renovating the whole state through 
each iteration.  

Let us consider that the state at time t is divided into h 
components as   .1 .2 .{ , , , }t t t t

h    
 
then 

. .1 . 1 . 1 .{ , , , , , }t t t t t
h          includes all of the components 

of t expect .
t
 . Then it could be proved that this sequential 

updating of components would not alter the invariant 
distribution if the acceptance probability was in the form of 
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where . is the th proposed component and 1:
. .π , )|( t t t
    is 

the full conditional distribution for .
t
 under π( )  [15] and 

1:
. ..( | , , )t t t
   q    is the th component proposal density. 

Any iteration, then, is composed of h sequential steps.  

To the Gibbs sampler, the acceptance probability is unity 
for all components since the proposal density to update 
the th component of t is identical with its full conditional 
distribution as 

    1: 1:
. . .. .| , , π | ,t t tt t    q        (20) 
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Figure 1. Simulated trajectories of three targets. 

The th iteration of th component at time t is to sample 
from the density 

  1:
. .1 . 1 1. 1 1., , ,π , ,,|t t t t t t

h                 (21) 

where the particular format of (21) is due to the fact that in 
sequential way of updating for single-component Metropolis-
Hastings method, the components after the th component, 
through the th iteration, are still at the previous states resulting 

from the  1 th  iteration. From now on, we take 

.1 . 1, ,[ ,t t
     1. 1 1., , ,]t t

h      as .
t
  . Each component 

of t is a target state which means that h is equal to  or 
equivalently . ,

t t
    s . Where ,

t
 s is the state of the th target 

through the th  iteration at time t. 

The density in (21) can be written according to (18) for 
the thi particle sample as 
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where ,
,

i t
  in (22) is the index of the cell occupied by the target 

,
,

i t
 s . After sampling from (22), the algorithm goes one step 

ahead and derives the full conditional distribution in 
the  1 th  updating step for .( 1)

t
   .  

The final distribution format used by the Gibbs sampler in 
(22) sounds like a great idea: particle filter is composed of p  

samples to approximate the posterior density 1 1: 1( | )t t p   . To 
that end, each sample of the optimal proposal in (18) is 
sampled by the Gibbs sampler through it  iterations where 
the first bu burns in iterations are dropped. Each iteration 
generates a joint sample where the it bu  joint samples are 
thought to be from the optimal density in (18). As a matter of 
fact, the first stage weights can be computed over those 

it bu  joint samples. An iteration comprises  steps where 
each step has to deal with a density in the form of (22) 
consisting of only x y  combinations of target locations 

rather than  x y


  in (18). We named the method has just 

been described as Gibbs particle filter (GPF).  

Apart from neighborhood cells gating, for each step, full 
conditional distribution in (22) has x y  mixture component 

densities. Besides that, there are steps through each iteration 
and each proposal density requires it iterations at each time 
and if the number of sample size is p , then GPF has to 

evaluate p t x yi       truncated components. The value for 
directly sampling from the optimal proposal density in (18) 

is  xp y


   . 

The point is that the GPF sounds appealing in the sense of 
reduction of computational burden when the number 

of p t x yi       is less than  xp y


   . 

IV. PERFORMANCE ANALYSIS 

A synthetic scenario is used to evaluate performance of the 
proposed algorithm as shown in Fig. 1. In this scenario, three 
different targets start out well separated, move closer and then 
separate again after some time. The beginning point of each 
target trajectory is designated by a cross. The time step for 
taking each measurement snapshot is T =1s. 

The targets move in an area of size 320 m× 320 m for a total 

time of 19 seconds. The observation area is divided 
into 10.7m 10.7m cells (30 cells in each direction). 2

v is 
always set to unity to make the comparison easy and  in (2) is 
set to half of the diameter of a measurement cell. For both 
methods (OPS and GPF) neighborhood cells gating approach is 
used with a threshold value of 0.02. Table I, shows the mean 
number of targets in track. Each target is in track if its 
trajectory is estimated not farther than a specific threshold, 
(here 1.5 times of the measurement cell diameter) from the true 
trajectory of the related target. Table II also represents the 
position RMS error of the targets in track. 

TABLE I.  MEAN NUMBER OF TARGETS IN TRACK BASED ON 

25 REALIZATIONS. 

Method 

SNR=8 dB SNR=10 dB SNR=12 dB 

 50

p
 

 100

p
 
 50

p
 

 100

p
 
 50

p
 

 100

p
 

OPS  2.6077 

2.4472 

2.5064 

2.6931 

2.4957 

2.6317 

2.9167 

2.9005 

2.8235 

2.9242 

2.8043 

2.8931 

2.9651 

2.9743 

2.8953 

2.9655 

2.9643 

2.9596 

GPF( 10)it   
GPF( 100)it   

TABLE II.  RMS POSITION ERROR OF TARGETS IN TRACK 

BASED ON 25 REALIZATIONS. 

Method 

SNR=8 dB SNR=10 dB SNR=12 dB 

 50

p
 

 100

p
 
 50

p
 

 100

p
 
 50

p
 

 100

p
 

OPS  6.1784 

6.3463 

6.5520 

5.9791 

6.0430 

5.5203 

4.9214 

5.1652 

5.1557 

4.6852 

5.4678 

4.8395 

4.5045 

4.5688 

4.8179 

4.4867 

4.6314 

4.6848 

GPF( 10)it   
GPF( 100)it   
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Figure 2. Average execution time with SNR 10 dB based on 25 iterations. 

 
As a matter of 

fact, by increasing 
the sample size all 
methods achieve 
an improvement 
in ability of 
detection and 
reducing the 
position RMS 
error. Also it is 
observed that by 
increasing the 
iterations of GPF 
method from 10 
to 100, we see its 
performance gets 

closer to the performance of OPS, though it consumes more 
computation time. 

Fig. 2 plots the average execution time of OPS and GPF 
with iterations of 10 and 100 with SNR=10 dB and for two 
sample sizes of 50 and 100. 

Although the GPF with 100 iterations produces closer 
performance to OPS compared to GPF with 10 iterations, in 
average, it runs 20 seconds (1.3 times with 50 particles) faster 
than OPS. However, GPF with 10 iterations is 74 seconds (13.3 
times with 50 particles) quicker than OPS.  

V. CONCLUSIONS 

The optimal proposal sampler, OPS, is derived for 
multitarget tracking within raw measurements and two 
strategies are provided to relieve the burden of sampling, 
named neighborhood cell gating and GPF. Efficiency of the 
two methods is established through simulations showing that 
by increasing the iteration number of GPF, the performance 
gets closer to OPS but also a good compromise can be reached 
between accuracy of GPF and its computation time by 
selecting a moderate iteration number. 
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