
On the Evaluation of Automatic Program Repair

Techniques and Tools
Alireza Khalilian

Dept. of Software Engineering
University of Isfahan

Isfahan, Iran
khalilian@eng.ui.ac.ir

Ahmad Baraani-Dastjerdi
Dept. of Software Engineering

University of Isfahan
Isfahan, Iran

ahmadb@eng.ui.ac.ir

Bahman Zamani
Dept. of Software Engineering

University of Isfahan
Isfahan, Iran

zamani@eng.ui.ac.ir

Abstract— Since 2009 several scalable and promising techniques

to automatic program repair have been proposed with each

technique often accompanied with a prototype tool. These

techniques work in different levels of code with various types of

defects and designed for different programming languages. Now

the subfield of automatic program repair is mature enough to

merit evaluate existing techniques and tools. This evaluation

helps us identify the strengths and weaknesses of current

research and provides future direction. To this end, in this paper,

we present a family of criteria grouped into seven sets for

evaluating automatic program repair techniques and tools.

Moreover, a five-level maturity model is proposed for the

mentioned subfield. To the best of our knowledge, no research yet

evaluates automatic program repair techniques and tools in a

general, broad, and comprehensive manner and this is the first

attempt towards this goal. We employed our criteria to three

existing mutation-based techniques and their corresponding tools

and reported the results of preliminary evaluation. The proof-of-

concept results demonstrate different aspects, capabilities and

shortcomings of each technique and provide evidence to the

applicability and utility of our criteria.

Keywords- program repair; patch; fault localization; fix

localization; criteria

I. INTRODUCTION

Software is still released with known and unknown bugs
[43] due to several reasons: limitations in time and resources of
testing and debugging, manual effort on fixing bugs, which
makes it expensive and time consuming, and higher rate of
faults detected by testing as compared to those that are fixed
[25]. Post-release fixing of faults is even more expensive and
adversely affects the credit of the company in the competitive
market [26]. Moreover, it may compromise the critical and
private user data. The results of studying the data from 139
software companies in North America [5] represented that each
one has spend about 22 million dollars per year to address
software defects. Moreover, the results of investigations [46]
delineate that among 2000 manual bug fixing, about 14 to 24
percent were incorrect and 43 percent of them resulted in
software crash, corruption, security concerns, and hang in
system’s functionality.

In response to these limitations, the research community
started developing automatic techniques [3, 8, 11, 13, 26, 31] to
program repair in 2009 based on the proposal of Arcuri et al.
[4]. Since then several scalable and promising techniques have
been proposed that work in different levels of code [25, 37]

with various types of defects [25, 19] and designed for different
programming languages [8, 22, 26]. Often each technique has
come with a prototype tool to show the applicability and utility
of the technique and to provide a way to evaluate it. Now the
subfield of automatic program repair is mature enough to merit
evaluation of existing techniques and their corresponding tools
to identify the benefits and shortcomings of them.

In ICSE’14 Monperrus reviewed [49] the PAR technique
[22] and proposed three criteria to evaluate automatic program
repair techniques. Then, in ISSTA’15, Qi et al. [50] evaluated
the patches of three automatic program repair techniques using
a few criteria. However, these publications used either small
number of criteria which limits comprehensive evaluation and
comparison, or the criteria are targeted towards evaluating the
results of some few specific techniques which limits
generalization. Moreover, comparing two given techniques
implicates that they must share many common features to make
the comparisons consistent and meaningful in terms of
theoretical and empirical aspects [51]. In their evaluations,
Smith et al. [51] selected GenProg [25] and TrpAutoRepair
[52] for comparison because they share sufficient common
characteristics. Trivially, this important requirement does not
often hold for diverse set of existing techniques. A similar
concern lies in the fact that many of repair techniques are
actually randomized algorithms [53]. Evaluating and
comparison of such algorithms are non-trivial. Then, how can
we evaluate and compare existing repair techniques?

In order to address these issues and to formalize evaluation
of current techniques and tools we present in this paper, a
family of 30 (mostly qualitative) criteria with total of 62 first-
level sub-criteria and total of five second-level sub-criteria. The
criteria are grouped into seven sets of interrelated criteria. Most
of these criteria can be measured objectively. For few of those
criteria that need subjective measurements, we present
guidelines to mitigate subjectivity. This is because the criteria
are intended to yield the same results of investigation by every
user. Moreover, the criteria are intended to consider
characteristics of each technique and its tool associated with
architectural properties, internal constructs, design decisions,
constituting components, optimization aspects, and the like.
Hence, the criteria can be measured with precise understanding
of the technique itself. In case where standard common
benchmarks are present, one can compare techniques in terms
of performance metrics. However, benchmarks come for a
specific language such as C [27] and other techniques that are
designed for languages such as Java [3] or Eiffel [41] fail to

benefit from such benchmarks. As a result, a comparison of
techniques in terms of performance and non-functional
properties are unlikely to succeed. Our criteria, however, aims
to overcome this issue by providing a way for evaluating
techniques themselves and for comparison with other
techniques without reliance on benchmarks and independent of
implementation and repair scenario. This also justifies why
some of them tend to be more general rather than specific.

We categorized our criteria into two broad classes: intrinsic
and extrinsic. Most of the criteria belong to the first class and
few of them belong to the second one. For each criterion, some
possible values are enumerated which helps identify the future
values of each criterion for newer techniques. In addition,
potential benefits and/or drawbacks behind
satisfaction/dissatisfaction of each criterion are presented that
helps incorporate useful features in the design of new
techniques. We also propose a five-level maturity model for the
automatic program repair techniques. This model facilitates
determining the status of an automatic program repair
technique in the literature. To the best of our knowledge, no
research yet evaluates automatic program repair techniques and
tools in a general, broad, and comprehensive manner and this is
the first attempt towards this goal. Overall, the criteria are
designed to help investigate the current body of knowledge in
the context of automatic program repair from different
viewpoints. The results of such investigation provide insightful
guidelines for future research to build sophisticated techniques
that are more scalable and have potential to be used in
industrial practice. In order to evaluate the criteria, we applied
them to three existing mutation-based techniques. The results
serve us as a proof-of-concept and demonstrate the
effectiveness of the proposed criteria. Applying the criteria on
the other techniques and an extensive and thorough evaluation
remain as future work.

The main contributions of this paper are as follows:

• A family of criteria and sub-criteria that is specific to
evaluate automatic program repair techniques and
tools. The criteria are grouped into seven sets of
interrelated criteria and each criterion belongs to
either of two classes: intrinsic or extrinsic.

• Some values are enumerated for each criterion or sub-
criterion according to the existing techniques and
tools. In addition, potential benefits/drawbacks of
each criterion are explained where possible.

• A five-level maturity model for automatic program
repair techniques and tools.

• The results of studies on evaluating three existing
techniques for automatic program repair using the
proposed criteria.

The remaining of this paper is organized as follows:
Section II briefly reviews automatic program repair concepts.
We present the motivation and our criteria to evaluate program
repair techniques in Section III. Section IV reports the results
of employing criteria to some of existing methods. Discussion
and limitations are given in Section V. Related work is

discussed in Section VI. Finally, conclusions are mentioned in
Section VII.

II. AUTOMATIC PROGRAM REPAIR

There exist two approaches to make correct programs [17,
26]: one class includes techniques that are applied in software
development process such as rigorous software engineering
[45]. This class cannot be applied to existing legacy software.
The second class consists of techniques that can be applied to
the software itself such as verification, testing, and debugging.
Verification techniques provably check the correctness of
programs. However, they need formal specifications which are
rare in practice in addition to scalability issues to make them
applicable in industrial practice [26]. Currently, software is
tested against a representative set of test cases to detect faults.
The faults are then localized to find the root cause or suspicious
regions of the code. Finally the bug will be fixed. However,
bug-fixing is still a manual effort which is time-consuming and
may introduce new faults [25, 28]. Besides, the rate of fault
detection by testing is higher than the rate with which faults are
fixed. This motivates the research community to seek for
automatic techniques to program repair.

Empirical investigations [10] showed that programmers do
not produce programs at random and the buggy program is
usually close to the correct state. Therefore, we can favor this
property to find correct programs by few number and small
modifications. A sequence of modifications to the buggy
program to correct it is usually called a patch. The number of
possible modifications over buggy program in infinite despite
the fact that required modifications is mostly small and
insignificant [3]. Hence, automatic program repair techniques
need to employ ways to substantially reduce this space. One
way is to map automatic program repair problem to a search
problem such as those in search-based software engineering
(SBSE) [14].

In order to establish automatic support on program repair,
two approaches exist. One class of approaches is meant to
generate comments or recommendations that serve as
debugging assistance for developers [18, 21]. The second class
actually fixes the bug by modifications on the code [25]. This
second class consists of two broad categories of automatic
program repair techniques [27], namely correct-by-
construction and generate-and-validate. The former produces
one or few number of correct programs using sound techniques
[19, 31]. The latter generates multiple candidate patches that
are then evaluated by heuristic methods and the most
appropriate one is returned [29]. The input to an automatic
program repair technique is a faulty program in source, binary,
or assembly code along with required behavior and an evidence
of the fault [28]. The latter pieces of information are typically
provided via test cases or some kind of specifications. The
automatic program repair technique often fixes the bug by
generating a patch, runtime modifications, or a dynamic jump
to the new code [26]. Note that current techniques to automatic
program repair are roughly unable to replace human developer
[25] due to many reasons. This is especially the case for test
case-based techniques because they cannot consider any aspect
or design goal beyond what can be manifested by test cases.
Note also that absolute “automation” is by no means the case

for existing techniques due to oracle generation problem, the
need to initialize and dispatch and other reasons [25, 28].

III. MOTIVATION AND THE PROPOSED CRITERIA

As the number of programming languages (PL) [38] and
model transformation languages 1 (MTL) [7] increases,
software developers need to leverage various evaluation criteria
[24, 38] to identify their strengths and weaknesses. This would
help them to decide on an appropriate language, among diverse
set of languages, for the task at hand. The results of evaluation
would also provide helpful insights for the design of more
effective and efficient languages in future. Similarly, the
research community has developed promising techniques and
tools in recent years for the subfield of automatic program
repair [3, 22, 26, 37]. Introducing these techniques led to an
extent of maturity that merits to be considered as a level of
maturity. At this stage, evaluation of existing techniques can
expose the potentials and shortcomings of each technique in
isolation. It can also provide a way to compare and contrast
different techniques and tools.

Evaluation and comparison of current repair techniques
face several impediments:

• We need to standard common benchmarks whose
absence make comparison nonsensical. However, the
current research community faces substantial
limitations in this line of work.

• The only available systematically-constructed
benchmark we are aware of, much recently created by
Le Goues et al. [27], consists of C programs. Hence,
other techniques designed for Java [3], Eiffel [41], or
other languages fail to use it.

• Even in presence of standard benchmarks and in case
where the target language of subject techniques are
the same, the implementation of a certain technique
may not be available, or the detailed settings of
parameters used in the tool may not be exactly
presented [27].

• Comparison of two given techniques implicate that
they share many common characteristics to make
consistent and meaningful results from both
theoretical and empirical aspects. This requirement
does not hold for diverse set of current techniques as
they establish different approaches.

• Many of current repair techniques are based on
randomized algorithms. Evaluating such algorithms is
non-trivial since many issues must be carefully taken
into account [51]: sample size, statistical tests, cross-
validation, and bootstrapping.

This paper presents domain-specific evaluation criteria to
be used in the subfield of automatic program repair. Putting a
new technique for automatic program repair in these criteria
allows for a fast yet accurate assessment of the technique itself.
It also provides a framework to help compare a certain

1 MTLs are used in the context of model-driven software engineering
(MDSE) [5]

technique with other existing techniques. To the best of our
knowledge, this is the first report to propose evaluating of
automatic program repair techniques using a general,
comprehensive, and mostly objective family of criteria
dedicated for this task. The novelty of our work lies in the fact
that in addition to present a broad family of criteria, we also
present some of the possible values for each criterion along
with the relevant characteristics. This helps extend the possible
values by appearance of new techniques accordingly.
Moreover, the potential benefits and/or drawbacks behind
satisfaction or dissatisfaction of each criterion are also given to
guide future research for developing more sophisticated and
effective techniques.

We grouped our criteria in seven sets of interrelated criteria
which are shown in Tables I to III. Except for the first group
which contains independent criteria, each other group consists
of the sub-criteria related to a major criterion. We propose to
divide the criteria into two broad classes: intrinsic and
extrinsic. Intrinsic criteria cover technical aspects that root in
the technique itself in terms of design, development, and
evaluation. By contrast, extrinsic criteria deal with
environmental aspects and are influenced by external factors.
Most of our criteria are intrinsic and few of them are extrinsic.

We have included those criteria that target automatic
program repair techniques and tools, that are general enough to
evaluate them independent of some (possibly unclear) details
and without reliance on running the tools, that can be perceived
and measured by understanding the technique and evaluations
themselves, and that can be measured objectively as much as
possible. We have also excluded each criterion that needs any
form of execution of the tool. Since each technique and its
corresponding tool map to each other, it is reasonable to
consider them together when evaluation.

In addition to the criteria, we propose a maturity model as a
separate criterion with five levels. This model takes as input an
automatic program repair technique and places it in the fittest
level. It would establish a metric to facilitate identifying where
a certain technique fits in the increasing body of the automatic
program repair literature.

In the remaining of this section, we give the mentioned
criteria. Each criterion may have multiple levels (at this time
only two levels) of sub-criteria. For each criterion or sub-
criterion, some possible cases are also given. The number of
criteria and their possible values can be further extended as the
subfield grows. The criteria are shown in Table I to Table III.
Upper part of Table I shows single intrinsic criteria; i.e. those
with no sub-criteria. The lower part of Table I and other tables
show the criteria that have first-level or second-level sub-
criteria. Note that extrinsic criteria start with “E”. We then give
explanations on criteria starting from Table I to Table III
sequentially.

The general approach: Some of the successful approaches
work based on evolutionary computations (EC) such as genetic
programming (GP) meta-heuristic [36]. The others work based
on behavioral models [8] and so on. The particular approach of
each category should be explicitly stated.

Repair approach: Correct-by-construction approaches
produce single or few repairs that are provably sound [27].
They work based on some formulation of program such as
formal specifications. Generate-and-validate approaches
produce multiple repairs heuristically and test them against a
fitness function [42].

Type of algorithm: An algorithm with at least one
randomized input or step is considered as stochastic algorithm
such as GP [36]. By contrast, deterministic algorithms always
produce the same output. Stochastic and deterministic search
demonstrate different tradeoffs in the search space [27].

The type of search: If all elements of a repair space are
enumerated, it is exhaustive; otherwise the search space may be
reduced through some constraints in which the search is
constraint-based [25, 37].

Type of execution: The algorithm may be distributed in
essence to multiple machines [37]; otherwise it may be
centralized to a single machine [43].

Maturity: We propose automatic program repair maturity
model (APRMM) with five levels to assess the maturity level
of an automatic program repair technique. These levels are as
follows: Proof-of-concept (PoC), confidence or reliability
(CoR), broad recognition (BR), optimization (OPT), and
industrial practice (IP). The descriptions for these levels are
shown in Table IV. Drawing strong conclusions based on the
results provided by exact statistical tests, comparisons, human
studies and similar means are required at each level. At this
time, no technique is at level 5. Few techniques moved from
level 3 toward 4; however, they are not yet placed at level IV.

Scalability: This criterion has been previously defined by
Le Goues [26]. Here, we extend this definition. Particularly,
three factors affect scalability: capability to work on real-world
programs with real-world defects; ability to repair programs
from thousands to millions lines of code; comparable to human
repair in terms of time and monetary cost. Lack of the first
factor makes an automatic program repair technique
unscalable. If the technique satisfies the first factor, it is
considered as partially-scalable. A technique with either the
second or the third factors, in addition to the first one, is
considered semi-scalable. Full-scalable technique satisfies all
three factors.

Reliance on formal specification: Some of the techniques
especially those that make sound patches [31, 41], rely on
different kinds of formal specifications to evaluate or construct
patches [8]. The exact type of specification should be explicitly
specified. Currently, however, formal specifications are not
common in practice, they need heavyweight tools, they are
hard to use and time-consuming [26].

Expressivity: An expressive automatic program repair
technique is one that can repair various types of programs
(generic programs) with various types of defects (generic
repair) [26].

Human competitive: An automatic program repair
technique is said to be human competitive if it satisfies four
properties: full-scalable, expressivity, minimum-quality repair
(see overall patch quality), and comparable to human repair in

terms of time and monetary cost [26]. Note that full-scalability
implies satisfaction of the fourth property. Moreover, if the
technique is multi-language (see language generality), then it
can be called super human competitive.

Desired functionality and evidence to the fault: In order
to repair a fault, a technique needs to know the desired
behavior (to preserve) and evidence to the fault (to eliminate).
Positive test cases typically are employed to show the desired
behavior and negative test cases to expose the fault. This is
effectively practical because test cases are always available or
can be generated. However, test cases do not provide sufficient
confidence to the quality of software [3, 28]. By contrast,
formal specifications provably evaluate programs. However,
they are rare in practice, especially for legacy software. Hybrid
techniques may leverage test cases and formal specifications to
benefit from the both worlds.

Instrumentation: Some techniques require adding extra
code to the program to gather different information. This
information is typically gathered against the execution of test
cases and specify statements that are exercised when execution
of positive and negative test cases. Fault localization and fix
localization [28] (suitable code to be used for fixing) benefit
from this information.

Most time-consuming part: Some parts of an algorithm
may be bottlenecks and are most time-consuming parts. For
example, in test case-based techniques [29, 37] fitness
evaluation needs to run the whole positive and negative test
cases on a program to measure its desirability. This would be
very time-consuming as compared to other parts.

Applied fault localization techniques: Most techniques [3,
25, 37] apply simple fault localization techniques to reduce the
infinite space of modifications. For example, statements
executed on running positive and negative test cases are
identified and weighted with heavier weight on statements that
exclusively executed on negative test cases. Some techniques
employ particular localization methods such as Tarantula [20].
Effective fault localization for effective program repair is
difficult and remains an unsolved problem [25]. Fault
localization is roughly impossible for some categories of faults
such as nondeterministic ones [25].

Syntactically ill-formed programs: This refers to whether
the technique outputs programs that do not compile due to
syntactical issues such as imbalance parentheses or the like
[13].

Semantically ill-formed programs: The output program
of a technique may be semantically wrong due to for example
using a variable out of score [13]. Applying strongly-typed GP
[33] in evolutionary approaches prevents from this problem.

Target system or context of repair: A technique may be
designed to work on, for example, legacy software in C,
embedded program in assembly, and so on.

Input: This specifies the requirements of an automatic
program repair technique to start. For example, a faulty
program along with some positive test cases and a negative test
case are typical inputs. Additionally, some of techniques
especially evolutionary ones include lots of parameters that

need to be set before the repair task commences. There can be
at least two choices: a default parameter setting (which has
been shown to be optimal in experiments) is used for all
repairs; or the user sets parameters at the beginning of each
repair task.

Output: This is the outcome of an automatic program
repair technique. A patch is the normal output. The repair
technique may make runtime modifications or set a jump to the
new code. The output patch can have at least two levels: an
initial patch which is the immediate output of repair technique
and the final patch which is minimized or optimized version of
initial patch against redundant codes added during evolution.

Available tool support: Often, a prototype tool is
constructed to support for evaluation and effectiveness of a
proposed technique. This tool can be made public and available
to download for other researchers to further investigate the
technique, to reproduce the results, or to directly compare the
obtained results with their own. The other case is to explain the
characteristics and technical aspects of the tool and the
obtained results.

Time and space complexity: Timing and space
complexities are differently measured for each technique. For
an evolutionary-based technique, the number of fitness
evaluations may be a scenario-independent metric to estimate
time complexity. Similarly, the memory needed to construct
individuals and generations may be an indicative of the space
complexity.

Industrial popularity and acceptance: This refers to the
fact that whether the technique is used in industrial practice or
not. It can be determined according to valid available reports.

Real-world share: This criterion measures the amount of
real-world software produced by the language on which the
technique works and is measured by three elements: the
number of available code repositories for that language; the
number of available jobs; and the number of web searches for
that language. These three pieces of information can be simply
obtained from online websites such as GitHut2, sitepoint3, and
TIOBE Index4 respectively.

Academic popularity and acceptance: There exist at least
two cases where a technique becomes popular in academia: it is
often used as baseline for comparison; its best practices and
design decisions will be adapted in developing new techniques.

Type of studies: Systematic studies [27, 29] follow a
certain methodology and are reproducible. They are conducted
according to standard and well-defined procedures such that
the results can be generalized and possible biases in datasets,
techniques, and underlying tools are minimized. Some other
studies may not be established systematically and thus are less
reliable.

Type of evaluations: Longitudinal studies [27] are several
defects in a program over the time. Each time a defect is
repaired and in case of exposing another defect, the program

2 www.githut.info
3 www.sitepoint.com
4 www.tiobe.com

undergoes another repair. Latitudinal studies [27] include
various programs and defects and measure the success of repair
in multiple programs.

Source of dataset: Datasets of experimental studies in the
context of fault detection, localization, and program repair may
be taken from three sources [27]: datasets in the wild are those
that were taken from ad hoc case studies, manual search
through databases, industrial partnerships, and the like.
Datasets might be collected through systematic search to help
prevent from biases. They may also come from existing
repositories. For the last case, the design purposes and
suitability of datasets should be considered to make sense for
the current study. Existing datasets are either benchmark
developed by other developers or a typical non-benchmark
dataset just to establish an evaluation.

Using cloud environments: When evaluating a certain
technique, it can be run on (public) cloud resources to save
time.

Type of experiments: Controlled experiments are
conducted against programs with a few reproducible defects.
These programs are often of medium and small sizes with
synthesized test suites generated to satisfy a certain coverage
criteria. Besides, they often contain seeded faults that are not
indicative of real-world faults. By contrast, case studies are
typically conducted on real-world (larger) programs with real
faults. The obtained results are more general provided that
biases in dataset were reduced or minimized. Controlled
experiments help perform proof-of-concept evaluations of a
technique; however due to major biases often present in
dataset, the results typically cannot be generalized.

Type of programs: A technique may be capable of
handling programs of various arbitrary types or it may work
only on application-specific programs such as web servers
[43]. The repair technique may have potential to be employed
to construct a hybrid system such as the closed-loop long
running system comprising web server and an intrusion-
detection system [25]. The first class of studies implies generic
techniques of program repair or program generality property.
To note that there exist techniques that claim to be generic
though they lack of sufficient experimental evidence to support
for their claim. Nevertheless, we consider them generic.

Size of programs evaluated: The programs used in
experiments are of different sizes. We categorize them in four
classes: small size stands for programs that have less than 100
lines of code; programs with more than 100 and less than 1000
lines of code are categorized as medium; programs that are
larger than 1000 lines of code and less than 100,000 are large;
and programs larger than 100,000 lines of code would belong
to very large class.

Type of analysis: The results of experiments can be
analyzed qualitatively or quantitatively. Moreover, evaluations
can be subjective or objective. Objective analysis makes
experiments and results reproducible and directly comparable
to other techniques. A combination of these cases can also be
made.

Metrics: A number of metrics have been used to evaluate
automatic program repair techniques. Among them, some need

further explanation. Patch readability is important due to
maintenance activities and future evolutions of the software.
Number of steps refers to the primary operations of a certain
technique. Efficiency typically measured by the number of
fitness evaluations for evolutionary approaches. The benefit of
this choice is that it is independent of any specific scenario to
measure the repair time. Average time to repair is typically
measured based on wall-clock time. Patch size is usually the
number of lines of code. Some of the techniques minimize the
obtained patch to eliminate problems such as code bloat and
redundant code and the like. These techniques produce an
initial patch and a final patch. Measurements are repeated for
both of these steps.

Comparison to other techniques: Studies in which
available benchmarks were applied can be directly compared to
other techniques. Besides, the defects should be reproducible.
Experimental setup of comparing studies should be as much
consistent as possible.

Defects are reproducible: Defect reproducibility is an
essential property to make datasets reusable in other studies.
They provide possibility of comparison with other techniques.
In order to reproduce a defect and replicate the results, six
elements should be available [27]: the source code of the
version of program that includes the fault; the test suite as
partial or specifications (by invariants, annotations, or
supporting documents) as complete indicative of correct
behavior and failing test case as evidence to fault; the exact
steps to run test suite for a tool; the suitable compiler and its
version and compiling scripts; the execution platform to expose
the fault including operating system, libraries, particular
hardware architecture, and supporting scripts; and the exact
configuration and parameter values.

Defect scenarios are well-defined: In order to perform a
comprehensive evaluation on a defect, we need defect scenario
which requires reproducible defects and human-written patch
as an optional element to provide a baseline comparison [27].

Results are replicable: To measure this metric, we should
check whether the defects are well-defined and the
configuration, experimental setup, and values of parameters are
exactly detailed. Note that if the repair technique includes
stochastic element, difficulties in replicating of results will
arise [27]. An exact report of the experiments with sufficient
details mitigates this issue.

The way of patch production: A technique may produce a
patch by random modifications [29] or provably produce sound
patches relying on formal specifications.

Source of repair code: A repair technique needs to find
appropriate code to repair a defect which is called fix
localization [28]. This code may come from existing library of
program code or pre-defined templates. Another option is to
use the code of the program under repair without any
limitation. Using the code of the repairing program itself roots
from the intuition that a programmer that makes a fault, is
likely to address this fault in another location [25, 26]. An
alternative way is to use a certain part of program to reduce the
large space of fix code and resolve some of the issues. For
example, fix space may be defined as statements that have

executed by at least one positive test case and their variables
are in the scope of target code in which fix code is added [29].
Similar approach can be employed when repairing assembly
code [37].

Number of repair alphabets: Various statements of the
programming language of the program under repair are
alphabets or primitives for repair techniques. Assembly
languages have higher number of alphabets than a high-level
language such as C. However, they are simpler and often have
fixed size.

The size of repair alphabets: As mentioned in previous
criterion, the size of statements may be fixed or variable. For
high-level languages such as C or Java, the size can be roughly
of arbitrary size. For assembly language it can be considered as
fixed size.

Complexity of repair alphabets: Complexity of
statements is very diverse for high-level languages. More
precisely, statements in high-level languages can be combined
and written in many (complex) ways. This is not the case for
low-level languages.

Human-validated and acceptability: In order to further
investigate the quality of the repairs, some studies perform post
facto manual code review by human developers. This will
substantially increase the confidence to the reported results and
effectiveness of the technique.

Comparison to human patches: In case where studies are
conducted around standard benchmarks, comparison to human
patches will manifest the effectiveness of the technique and
gives stronger confidence in the results of evaluation. Note that
the benchmark should contain human-written patches per each
defect in programs. When patches resulted from automatic
techniques are compared with manual human patches in terms
of cost (monetary, wall-clock, etc), at least three potential
complexities may arise [29]. For one, identifying defects
require test cases and test case generation makes additional
costs often in development of open-source software
development. For two, patches produced by automatic
techniques need further inspection and validation by human
developers. Finally, human patches are shown in many cases to
be imperfect [46] as was reported in Section I.

Runtime overhead: A repair technique may add extra code
for runtime monitoring or other similar purposes. This code
often leads to running overheads in the repaired program [11].

Large augmented code: The extra code added by repair
technique may be so large that makes significant increase in the
final code size [39].

Steps for further quality: There exist techniques that
validate the quality of patches in multi-level manner. For
example, a patch that passes all positive and negative test cases
during evolution is considered to be valid [3]. After termination
of repair algorithm, the output patch is executed against a
larger set of test cases to provide more confidence in its
quality. A patch that passes this stage is called robust [3]. This
is essentially effective because validation of program under
repair occurs many times during consecutive iterations of

repair algorithm and large sets of test cases make the technique
heavily time-consuming.

Internal metrics used to validate: What are internal
metrics used to validate the quality of the patch? Compilation
of patched programs and testing are such (simple) metrics.
Testing are typically accomplished using test cases and bug-
inducing inputs. The type of testing differs according to the
type of defects and programs. For instance, in the context of
security applications, fuzz testing is used to measure the
functionality of programs for quality purposes.

External metrics used to validate: A comparison to
human-written patches in terms of size and time-to-repair are
external metrics to validity. The severity of the defect in real-
world software is another external metric. This information
need standard benchmarks [27] that report them. However, at
the time of writing this paper, they are not available. Validation
using the mentioned metrics is an initial step to justify applying
repair techniques in industrial practice.

Minimized or optimized: A repair task is very close in
spirit to a plastic surgery [16]. After an initial patch is
generated with respect to minimal requirements, it may contain
redundant or dead code that does not contribute to the correct
functionality of the program. A repair technique is expected to
leverage additional post-processing step to eliminate any kind
of redundancies. Delta-debugging and structural differencing
are common techniques used [1, 48]. These cleanup processing
may be done on the high-level, assembly code or abstract
syntax tree (AST) of the program.

Fitness function: During the process of patch generation,
intermediate programs are generated that should be measured
for desirability to direct the process towards the correct patch.
Particularly this is the case for evolutionary techniques via a
fitness function [25]. This function may leverage test cases,
formal specifications, or a combination for fitness evaluation.
At any rate, measuring desirability by test cases is time-
consuming and a major limitation in test case-based
techniques. Most of the existing techniques are single-objective
in that they target only one aspect of the program.

Overall patch quality: This criterion has three cases:
minimum, medium, and high. A patch that passes all positive
and negative test cases (i.e. fixes the defect and preserves the
required behavior) and does not introduce new faults or
vulnerability is a minimum-quality patch. A minimum-quality
patch without running overhead or large augmented code
(possibly redundant) is a medium-quality patch. Finally, a
high-quality patch is a medium-quality patch that is also
validated and accepted by human developer. Note that Le
Goues defined high-quality patch [26] equivalent to our
minimum-quality level. By contrast, our definition here is
intended to be more general and comprehensive.

Reliance on test cases: A number of state-of-the-art
techniques for program repair need test cases as a major
element. Test cases are prevalent in practice or can be
generated using huge number of test case generation techniques
available [2]. However, exhaustive testing using the whole test
suite is infeasible due to constraints in testing time and
resources. Thus we need to select an indicative subset of test

cases which is a challenging task [47]. Less confidence in the
software is another concern.

Source of test cases: How should we find the required test
cases? They may come from existing test suites, or can be
generated automatically, or may be provided by human
developers.

Co-evolution of test cases: As the program evolves and its
structure mutates, test cases may no longer validate the
evolving program. Arcuri proposed to co-evolve test cases with
programs similar to prey and predator in order to help
convergence rate [4]. We propose to use test suite
augmentation (TSA) techniques [23] to co-evolve test cases.

Measuring quality of test cases: The quality of test cases
is mainly measured through code coverage criteria or fault-
exposing potential [26].

Method to select test case: Since exhaustive regression
testing is infeasible, we need to select a representative set of
regression test cases. Test case selection, test suite reduction,
test case prioritization [47], or impact analysis [34] techniques
are common.

Oracles: A critical requirement of test case-based
techniques is an oracle which is the expected output of program
against running a test case. Oracles are typically provided in
studies. However, full automation of repair techniques
necessitates automatic oracle generation [15], which remains a
challenging task.

Type of evolutionary approach: GP has been the most
applied meta-heuristic in current techniques. However, other
methods such as hill climbing were also used.

Code bloat: This is a problem which mostly occurs in GP.
When GP modifies the code during evolution, redundant code
may be added that does not contribute to the code responsible
for repair. There are a number of bloat control mechanisms in
the literature [32] to resolve the problem. Existing research
employed methods to control bloat in automatic program repair
techniques [25].

Type of mutation operator: For the case of GP-based
techniques, mutation is an essential operator on individuals. In
the literature of common GP techniques, mutation is
responsible for exploitation of current individual [36] by
changing a single bit. However, mutation in GP-based program
repair techniques accounts for both exploration and
exploitation [36] by changing a statement. In fact, mutation is
customized for program repair context. Three operations often
occur for mutation: insert, delete, or replace. This modification
may apply on AST [13], assembly code [37], list of edits [29],
and so on.

Type of crossover operator: Since developers do not write
programs at random, a faulty program is assumed to be close to
correct one [3, 10]. Hence, crossover does not significantly
contribute in the context of program repair and would have a
low rate. One-point crossover and variations of unit crossover
have been mostly used in current techniques [36]. Crossback is
another type of crossover in which crossover is performed on
an individual and the original faulty program [36].

TABLE I. SINGLE INTRINSIC CRITERIA (UPPER), EXTRINSIC CRITERIA, AND SUB-CRITERIA FOR ‘EVALUATION’ CRITERION

Criterion Some possible values T1 T2 T3

The general approach 1) Evolutionary, 2) Non-evolutionary 1 1 1

Repair approach 1) Correct-by-construction, 2) Generate-and-validate 2 2 2

Type of algorithm 1) Deterministic, 2) Stochastic 2 2 2

The type of search 1) Exhaustive, 2) Constraint-based 2 2 2

Type of execution 1) Centralized, 2) Distributed 1 1 1, 2

Maturity 1) PoC, 2) CoR, 3) BR, 4) OPT, 5) IP 1 3 2

Scalability 1) Not scalable, 2) Partially-scalable, 3) Semi-scalable, 4) Full-scalable 2 4 4

Expressivity 1) Yes, 2) No 1 1 1

Human competitive 1) Yes, 2) No 2 1 1

Reliance on formal
specification

1) Yes, 2) No 2 2 2

Desired functionality and
evidence to the fault

1) Test case, 2) Formal specification, 3) Hybrid 1 1 1

Instrumentation 1) Yes, 2) No 1 1 2

Most time-consuming part 1) Fitness function 1 1 1

Applied fault localization
techniques

1) Weighting statements by test cases, 2) Particular technique, 3) Existing
technique

2, 3 1 2

Syntactically ill-formed
programs

1) Yes, 2) No 2 2 1

Semantically ill-formed
programs

1) Yes, 2) No 1 1 1

Target system or context of
repair

1) Legacy software, 2) Embedded system, 3) Object-oriented software 3 1 2

Input Faulty program in various forms (1: source, 2: binary, 3: intermediate), 4)
Test cases (4: positive, 5: negative), 6) Formal specifications, 7) Parameter
settings

1, 4,5, 7 1, 4, 5, 7 2, 4, 5,
6

Output 1) Textual patch or repaired program, 2) List of edits and changes, 3)
Runtime modifications, 4) Jump to the new code

1 2 1

Available tool support 1) Yes, 2) No 2 1 2

Time and space complexity 1) Typical complexities to run evolutionary algorithms such as GP, but
optimized due to several design decisions

1 1 1

E – Industrial popularity and acceptance 1) Yes, 2) No 2 2 2

E – Real-world share #Code repositories 222,852 73,075 2,264

#Current jobs 18% 9% 0.0%

#Web searches 19.57% 15.62% 1.81%

E – Academic popularity and acceptance Comparison? 1) Yes, 2) No 2 1 2

Adaptation? 1) Yes, 2) No 2 1 2

Evaluation T1 T2 T3

Sub-Criteria Some possible values

Type of studies 1) Systematic, 2) Non-systematic 1 2 1

Type of evaluations 1) Longitudinal, 2) Latitudinal 2 2 2

Source of dataset 1) In the wild, 2) Systematic search, 3) Existing data 1 2, 3 3

Using cloud environments 1) Yes, 2) No 3 2 1

Type of experiments 1) Controlled, 2) Case studies 1 2 2

Type of programs 1) Generic, 2) Application-specific 1 1 1

Size of programs evaluated 1) Small, 2) Medium, 3) Large, 4) Very large 1 1, 2,
3, 4

1, 2,
3

Type of analysis 1) Qualitative or 2) Quantitative, 3) Subjective or 4) Objective 2, 4 1, 2,
4

1, 2,
4

Metrics 1) Number of patched defects, 2) Time to repair, 3) Monetary cost, 4) Patch
size, 5) Patch complexity or readability, 6) Memory, 7) Success rate, 8)
Number of steps required to obtain patch, 9) Efficiency, 10) Number or
percent of positive and negative test cases, 11) Program size, 12)
Compilation (absolute time or percent of total time), 13) Measurements for
original and final patch, 14) Technique-specific metrics such as weighted
path

8,
11

2, 4,
7, 9,
10,
11,
12,
13,
14

2, 6,
7, 9,
11,
14

Comparison to other techniques 1) Yes, 2) No 2 2 2

Defects are reproducible 1) Yes, 2) No 2 1 1

Defect scenarios are well-defined 1) Yes, 2) No 2 1 1

Results are replicable 1) Yes, 2) No 2 1 1

TABLE II. 4 CRITERIA ALONG WITH THEIR SUB-CRITERIA

Patch and patch quality T1 T2 T3

Sub-Criteria Some possible values

The way of patch production 1) Sound, 2) Stochastic 2 2 2

Source of repair code 1) Pre-defined library, 2) Clamp-variable-to-value, 3) Templates, 4)
Existing program code, 5) Generating new code, 6) Fixloc space, 7)
Constrained assembly code

4 6 4

Number of repair alphabets 1) Low, 2) High 1 1 2

The size of repair alphabets 1) Fixed, 2) Variable 2 2 1

Complexity of repair alphabets 1) Low, 2) High 2 2 1

Human-validated and acceptability 1) Yes, 2) No 2 1 2

Comparison to human-patches 1) Yes, 2) No 2 1 2

Running overhead 1) Yes, 2) No 2 2 0

Large augmented code 1) Yes, 2) No 2 2 0

Steps for further quality 1) Valid, 2) Robust 1,
2

1 1

Internal metrics used to validate 1) Testing, 2) Compilation 1,
2

1, 2 1, 2

External metrics used to validate 1) Human time-to-repair, 2) Size of human patch, 3) Severity of defect 0 0 0

Minimized or optimized? 1) Yes, 2) No 2 1 2

When 1) During patch generation, 2) After patch
generation

0 2 0

Applied techniques 1) Delta-debugging, 2) structural
difference

0 1, 2 0

Target of modifications 1) AST, 2) Source code 0 1 0

Fitness function 1) Yes, 2) No 1 1 1

Objective 1) Single-objective, 2) Multi-objective 1 1 1

Method of measurement 1) Test case, 2) Formal specification, 3)
Code review, 4) Hybrid

1 1 1

Overall patch quality 1) Minimum, 2) Medium, 3) High 1 1 1

Test suite T1 T2 T3

Sub-Criteria Some possible values

Reliance on test cases 1) Yes, 2) No 1 1 1

How many of each test case? (#Positive, #Negative); s = small (< 10), m = medium (10 <= m <=
100), l = large (> 100), ‘+’ = more than one

(+, +) (s, 1) (+, 1)

Source of test cases 1) Existing, 2) Generation, 3) Human developers 2 1 1

Co-evolution of test cases 1) Yes, 2) No 2 2 2

Measuring quality of test cases 1) Coverage, 2) Fault-exposing potential 1 0 0

Method to select test case 1) RTS, 2) TCP, 3) TSR, 4) IA 0 0 0

Oracles 1) Existing, 2) Generation 1 1 1

Evolutionary approach T1 T2 T3

Sub-Criteria Some possible values

Type of Evol. approach 1) Genetic programming, 2) Hill climbing, 3) Random 1, 2,
3

1 1

Code bloat 1) Yes, 2) No 1 1 1

Type of mutation operator 1) Specific, 2) Pre-customized by GP engine, 3) Rewriting rules based on
grammar, 4) Genetic modification in AST, 5) Genetic modification in patch list,
6) Genetic modification in assembly

2 4 6

Type of crossover operator 1) Crossback, 2) One-point, 3) Variations of unit crossover 0 2 0

Code selected for mutation 1) A type of fault localization space 1 1 1

Fix code for mutation 1) Fixloc space, 2) Whole program, 3) A special search operator 3 1 2

Selection code for crossover 1) Cutoff point in fault localization space 0 1 0

Tournament selection 1) Yes, 2) No 1 1 1

Elitism 1) Yes, 2) No 1 0 0

Language T1 T2 T3

Sub-Criteria Some possible values

Target language 1) Language-specific, 2) General languages 1 - Java 1 - C 1 - ASM

Language generality 1) Yes, 2) No 2 2 2

Language evaluations 1) Single language, 2) Multiple languages 1 1 2

Level of code 1) Source, 2) Binary, 3) Intermediate (AST, ELF, ASM) 1 1 3

Level of modifications 1) Assembly, 2) High-level statements (Atomic, Sub-stmt.) 2 2 1

Conversion to other form 1) AST, 2) List of edits, 3) List of byte-codes, 4) List of
assembly instructions, 5) Lisp code

1 1 0

Global and local variables, data
structures, type definitions, and the like

1) Yes, 2) No 1 2 0

TABLE III. DEFECTS CRITERION AND ITS SUB-CRITERIA

Defects T1 T2 T3

Sub-Criteria Some possible values

Defect class 1) Generic repair, 2) Defect-specific 1 1 1

Defect type Deterministic (1: single-threaded, 2: multi-threaded), 3) Concurrent and
nondeterministic

1 1, 2 1

Number of defects 1) Single-fault, 2) Multi-fault 1 1 1

Locality of defects 1) Local, 2) Whole program 1 1 1

Priority of defects 1) High-priority, 2) Low-priority 2 1 1

E – Contemporary defects 1) Legacy, 2) Modern, 3) Common 0 1, 3 1, 3

TABLE IV. LEVELS OF APRMM AND DESCRIPTIONS

Level Description

Level 1 – Proof of Concept (PoC) The technique is evaluated against small programs that are either hand-coded or taken from other
studies or the like. At any rate, they are not real-world programs. Typically a single or limited
configuration and parameter set are used.

Level 2 – Confidence or Reliability
(CoR)

This level points to the fact that whether a particular technique has been investigated on various
types of real-world programs with various sizes and defects to study different tradeoffs and
functionalities.

Level 3 – Broad Recognition (BR) This level includes investigating different design decisions, configurations, and parameter settings of
the technique.

Level 4 – Optimization (OPT) At this level, the exact contexts and circumstances in which the technique best fits are identified.

Level 5 – Industrial Practice (IP) At this level, the technique is extended and enhanced enough to be scalable, effective, and efficient
in industrial practice.

Code selected for mutation: A GP-based technique often
selects the target code for mutation from a limited space to
overcome space complexity issues and targets more relevant
code. Particularly, randomly selecting code from the fault
localization space (statements that identified suspicious and
further ranked by a fault localization technique) would be a
reasonable design decision [43].

Fix code for mutation: In case where the mutation
operator tends to insert or replace code, extra code is needed.
Often this code is selected from the faulty program itself
considering the intuition that the faulty code contains the seeds
of its repair as well [26]. The simplest case is to choose the
code at random from the whole program. A more intelligent
selection would be to choose the statement from the fix
localization space [28]: the statement whose variables are in the
scope of target statements and at least one positive test case
exercises that statement.

Selection code for crossover: Crossover is a major
operator in common GP techniques but is less important for
GP-based program techniques. Nevertheless, a technique may
want to choose a cutoff point in fault localization space
(weighted path) [43]. Many other techniques are possible.

Tournament selection: A method of selection at each
generation [36].

Elitism: Selecting the fittest individuals to move to the next
generation and affecting convergence rate [36].

Target language: Often program repair techniques are
designed per each language. GenProg designed for legacy
software in C [25]. Other techniques were designed for Eifel
[8] and assembly [37] languages. Since program repair needs
special treatment for the statements of each language, it seems
that near future techniques will be language-specific.

Language generality: A technique that is designed to
repair programs of one language may have potential to be
easily adapted for repairing of programs in another language.
This may occur due to for example close syntactical constructs
of both languages. In this case, the technique could be called
multi-language.

Language evaluations: Typically techniques designed for
high-level languages are evaluated against a single language
for which they were designed [22]. However, there exist
techniques that designed for and evaluated against multiple
low-level languages such as assembly and ELF binary [37].

Level of code: Automatic program repair techniques work
on different levels of code, representing different tradeoffs in
design and efficiency. Source code [25], binary code [35], and
assembly code [37] are some examples.

Level of modifications: A technique may modify only
major statements and inner sub-statements remain untouched;
or else, it may modify a target statement and all of its sub-
statements.

Conversion to other form: Typically, program repair
techniques convert original source code to another form for
modifications. For example, GenProg converts C source code
to AST. In later versions, it stores the modification on a list of
edits for efficiency.

Global and local variables, data structures, type
definitions: Some of the existing research just work on
executable statements and do not take global and local variable,
data structures, or type definitions into consideration.

Defect class: Techniques that make generic repair are
preferable since they work for multiple classes of defects
(defect generality). By contrast, defect-specific techniques
work on a single class of defects and thus are optimized for that
class and typically produce sound patches. Most of existing

techniques are designed for generic repair for which
specification of desired behavior and evidence to the fault
should be provided somehow [3, 25]. Moreover, most of the
defect-specific or correct-by-construction techniques employ
implicit specifications [27]. A number of the properties among
several of more formal techniques, especially correct-by-
construction ones, are common with the advances in program
synthesis such as component-based or test-driven program
synthesis [27].

Defect type: At high-level, defects can divided into
deterministic and concurrency categories. Most of existing
techniques repair deterministic defects [25] and are unsound.
This kind of defects can occur in single-threaded or multi-
threaded programs. By contrast, the number of techniques that
repair concurrency faults is less than the other category but
they often produce sound patches. Concurrency faults are
typically hard to reproduce [27].

Number of defects: This indicates the number of faults
present in the program that can be simultaneously repaired by a
technique.

Locality of defects: The root cause of a defect may be
assumed to be local or spread through the whole program.

Priority of defects: The defects that are used in evaluating
a certain techniques should be high priority; i.e. they are
important enough for human developer to repair and influence
test suite [29].

Contemporary defects: An automatic program repair
technique may repair defects that are rarely found in current
software being developed; Or else, it might be designed to deal
with the defects that are common in modern software
technologies, languages, and programming paradigms. For
instance, buffer overflow is a kind of security vulnerability due
to a semantic fault in legacy C/C++ programs which is not
checked by the compiler. Modern languages such as C# or Java
avoid such issues by verifying the index bound of an array.
Some defects are specific to modern newer languages such as
class cast exception. Finally, a wide range of (logical) faults are
common in every language.

IV. EVALUATION

Due to strict limitation in space, we summarize the results
and report a fraction of our evaluations just to serve as a proof-
of-concept. The rightmost three columns of Table I to Table III
are assigned to concise representation of the results. We report
the results for three of existing mutation-based techniques and
label them as T1 to T3 as follows: T1 stands for the technique
presented by Arcuri [3]; T2 shows GenProg which was
presented by Le Goues et al. [25]; T3 is related to the technique
by Schulte et al. [37]. Then, the possible values of each
criterion are numbered and further used in Ti columns. A zero
inside a cell means that either the criterion or cases do not
make sense or there is no evidence to measure the
corresponding criterion. Investigation of other state-of-the-art
techniques along with detailed explanation on the results
remains for future publications. Next, we present a brief
introduction to each of three techniques.

The technique proposed by Arcuri [3] uses three
randomized search algorithms including random search as
baseline, hill climbing, and GP to evolve faulty programs into
correct ones. The technique employs new operators based on
fault localization technique to narrow down the space of
modifications in the code. This technique works on a large
subset of Java language. A tool named JAFF implements the
technique and evaluates it on five faulty versions of seven
small Java programs with seeded faults. Passing test cases
indicate the correct behavior and failing test case provide
evidence to the fault.

GenProg [25] is a repair technique based on GP that works
on C source programs. It targets eight classes of faults mostly
security ones and was evaluated on 16 programs in terms of
quantitative and qualitative metrics. The programs are
transformed to AST representation in which specialized
mutation and crossover operators modify the programs. Fault
localization and fix localization are used to narrow down the
corresponding space. GenProg employs failing and passing test
cases to serve as the evidence to the fault as well as the correct
behavior. They are also used to measure fitness for evaluating
candidate patches.

The technique by Schulte et al. [37] works on arbitrary
faults on embedded systems where limited resources are
available. Using GP approach to repair programs, it works on
assembly and ELF binary code. Besides, random fault
localization was employed to provide performance and narrow
the search space. The technique was evaluated on 12 C
programs and a C++ faulty program. It also uses test cases to
evaluate candidate fixes. While the techniques by Arcuri and
Le Goues need instrumentation to collect initial information of
the code, this technique is free from code instrumentation.

V. DISCUSSION AND LIMITATIONS

When comparing two techniques using the mentioned
criteria, the significance of each criterion should strongly be
considered. Some properties for an automatic program repair
are critical and the other may be less important. In other words,
at least two categories of significance exist among criteria
namely major and minor. For instance, capability of a
technique to handle various types of faults and programs and
thus its expressive power could be more important than timing
costs. Hence, this importance can introduce weights for criteria.
In fact, if we want to combine the results of all criteria for a
technique to measure its overall functionality and performance
and compare to another technique, this weighting should be
incorporated somehow. Another concern may arise by the fact
that some criteria have many degrees and limiting them to
some discrete cases leads to very coarse-grain measurements.
The net effect is lack of proper discrimination among
techniques. For instance, “generic repair” for “defect class” is
roughly an approximation of reality. The technique might have
potential only to handle several types of security defects (and
not all of them) and classified as a generic repair technique
against a technique that can handle only atomicity violation
fault and thus is defect-specific. At the same time, another
technique that can handle various types of defects in web
application is again considered as generic repair. In fact such
criteria are by nature very fuzzy and subjective.

A similar problem occurs for criteria that are influenced by
several elements and are measured only in Binary manner such
as “yes” and “no”. For example, “human competitive” criterion
does well illustrate this situation. It consists of four sub-criteria
and has two possible cases, “yes” and “no”. If the technique
does not satisfy a sub-criterion such as full-scalability, we
classify the technique as non-human competitive. However, it
may actually be less human competitive compared to the ideal
case not non-human competitive.

Finally, we gave some possible cases for each criterion as
guidelines. We do not claim that the list of values is
comprehensive and they are by no means complete. The list of
values per each criterion may be extended accordingly.

VI. RELATED WORK

Evaluation Criteria. Programming languages and model
transformation approaches have been evaluated in many
studies using different criteria. Readability, writability, and
reliability are major criteria with various sub-criteria used to
evaluate PLs [38]. Similarly, bidirectionality, reusability, and
rule inheritance are common criteria for the assessment of
MTLs in the context of model-driven software engineering
(MDSE) [7, 24]. However, most of these criteria are
qualitatively measured and are too vague for research
community to agree on. This is why subjective measurements
are common in these contexts despite the fact that objective
measurements were also employed to mitigate the subjectivity.
In this paper, we introduced several criteria for objective
measurement and evaluation of the automatic program repair
techniques to direct this young research subfield.

Automatic Program Repair. Preliminary work on
program repair involves substantial limitations such as heavy
constraints on the type of bugs or the need to formal
specifications. Wotawa and Stumptner made early attempts on
bug-fixing by considering a single fault model [40]. It
exhaustively searches the state space of program to find a
correct one. Using static analysis and pattern matching,
Deeprasertkul et al. presented a technique [9] to find and repair
pre-defined bugs.

Arcuri proposed the use of GP for the task of general
program repair for the first time [3]. This technique needs only
positive and negative test cases without any assumption on the
type of bugs. Furthermore, it does not have any pre-defined
pattern for patches and the candidate patches are evaluated
using a fitness function. Inspired by the proposal of Arcuri,
Weimer et al. started to study the application of GP to
automatic repair of real-world programs with real faults [25,
28, 43]. They investigated different representations [30] and
fitness functions [12] on programs taken systematically from
real software repositories [29]. Dallmeier et al. introduced
PACHIKA [8] to generate fixes according to the difference
between normal and anomalous behavior. These techniques
and that of Arcuri [3] are dependent upon test cases to validate
patches and have at least two drawbacks; lack of confidence to
the results of test case-based evaluation and longer repair time
due to numerous test case executions.

Weimer presented an automatic method for patch
generation [44], which defined formal safety specifications in

the form of finite state machine. Demsky et al. presented a
technique [11] for data structure repair [24] based on formal
specification of consistency for a data structure. Sound
techniques to repair concurrency bugs were presented by
Bradbury et al. [6], Jin et al. (AFix) [19], and Liu and Zhang
(Axis) [31]. Most of such techniques soundly patch atomicity
violation faults. Defect-specificity of such techniques and
working based on formal specifications (which are rare in
practice) are major shortcomings of these techniques.
ClearView [35] which was proposed by Perkins et al. uses
runtime monitoring in binary code level to specify failing
executions and then generates the candidate patches. PAR is
another recent technique [22], proposed by Kim et al., for patch
generation of Java programs based on the knowledge gained by
manual inspection of human-written patches. All of these
techniques have just evaluated their own techniques in isolation
by some metrics. However, none of them presented a general
framework to evaluate and compare automatic program repair
techniques against each other. This paper concerned itself to
bridge this gap.

Automatic Program Repair Evaluation. Monperrus [49]
and Qi et al. [50] presented some evaluation criteria for the
assessment of automatic program repair techniques. However,
they either used a small number of criteria [49] or their criteria
[50] are limited and specifically targeted towards evaluating
few of existing techniques. Moreover, they often need to run
the corresponding tools for which some issues may preclude.
Even in case of running the tools extensive investigations are
required to draw conclusions. By contrast, our criteria are
intended to be general, comprehensive, objective, easy to
measure, and independent of running tools.

VII. CONCLUSION

This paper introduced a family of criteria for the
assessment of automatic program techniques. Since 2009 a
number of promising techniques to automatic program repair
have been presented and this subfield is mature enough to
evaluate existing techniques to direct future research. To
formalize this evaluation and make it more systematic, we
proposed criteria with objective measurement capability. One
of the criteria is the amount of maturity for which we presented
a maturity model. We also evaluated three of existing
techniques using our criteria and compared them against each
other and gave direction for future work. To our knowledge,
this is the first report to present comprehensive evaluation
criteria for automatic program repair context.

REFERENCES

[1] Al-Ekram, R., Adma, A., & Baysal, O. (2005, October). diffX: an
algorithm to detect changes in multi-version XML documents.
In Proceedings of the 2005 conference of the Centre for Advanced
Studies on Collaborative research (pp. 1-11). IBM Press.

[2] Anand, S., Burke, E. K., Chen, T. Y., Clark, J., Cohen, M. B.,
Grieskamp, W., ... & McMinn, P. (2013). An orchestrated survey of
methodologies for automated software test case generation. Journal of
Systems and Software,86(8), 1978-2001.

[3] Arcuri, A. (2011). Evolutionary repair of faulty software. Applied Soft
Computing,11(4), 3494-3514.

[4] Arcuri, A., & Yao, X. (2008, June). A novel co-evolutionary approach to
automatic software bug fixing. In Evolutionary Computation, 2008. CEC

2008.(IEEE World Congress on Computational Intelligence). IEEE
Congress on (pp. 162-168). IEEE.

[5] Ballou, M. C. (2008). Improving software quality to drive business
agility. White paper. International Data Corporation.

[6] Bradbury, J. S., & Jalbert, K. (2010, September). Automatic repair of
concurrency bugs. In International symposium on search based software
engineering—fast abstracts (pp. 1-2).

[7] Brambilla, M., Cabot, J., & Wimmer, M. (2012). Model-driven software
engineering in practice. Synthesis Lectures on Software
Engineering, 1(1), 1-182.

[8] Dallmeier, V., Zeller, A., & Meyer, B. (2009, November). Generating
fixes from object behavior anomalies. In Proceedings of the 2009

IEEE/ACM International Conference on Automated Software
Engineering (pp. 550-554). IEEE Computer Society.

[9] Deeprasertkul, P., Bhattarakosol, P., & O’Brien, F. (2005). Automatic
detection and correction of programming faults for software
applications. Journal of Systems and Software, 78(2), 101-110.

[10] DeMillo, R. A., Lipton, R. J., & Sayward, F. G. (1978). Hints on test
data selection: Help for the practicing programmer. Computer, (4), 34-
41.

[11] Demsky, B., Ernst, M. D., Guo, P. J., McCamant, S., Perkins, J. H., &
Rinard, M. (2006, July). Inference and enforcement of data structure
consistency specifications. In Proceedings of the 2006 international
symposium on Software testing and analysis (pp. 233-244). ACM.

[12] Fast, E., Le Goues, C., Forrest, S., & Weimer, W. (2010, July).
Designing better fitness functions for automated program repair.
In Proceedings of the 12th annual conference on Genetic and
evolutionary computation (pp. 965-972). ACM.

[13] Forrest, S., Nguyen, T., Weimer, W., & Le Goues, C. (2009, July). A
genetic programming approach to automated software repair.
In Proceedings of the 11th Annual conference on Genetic and
evolutionary computation (pp. 947-954). ACM.

[14] Harman, M., Mansouri, S. A., & Zhang, Y. (2012). Search-based
software engineering: Trends, techniques and applications. ACM
Computing Surveys (CSUR), 45(1), 11.

[15] Harman, M., McMinn, P., Shahbaz, M., & Yoo, S. (2013). A
comprehensive survey of trends in oracles for software
testing. University of Sheffield, Department of Computer Science, Tech.
Rep. CS-13-01.

[16] Harman, M. (2010). Technical Perspective Automated Patching
Techniques: The Fix Is In. Communications of the ACM, 53(5).

[17] Jeffrey, D. B. (2009). Dynamic state alteration techniques for

automatically locating software errors (Doctoral dissertation,
UNIVERSITY OF CALIFORNIA RIVERSIDE).

[18] Jeffrey, D., Feng, M., Gupta, N., & Gupta, N. (2009, May). BugFix: A
learning-based tool to assist developers in fixing bugs. In Program

Comprehension, 2009. ICPC'09. IEEE 17th International Conference
on (pp. 70-79). IEEE.

[19] Jin, G., Song, L., Zhang, W., Lu, S., & Liblit, B. (2011). Automated
atomicity-violation fixing. ACM SIGPLAN Notices, 46(6), 389-400.

[20] Jones, J. A., & Harrold, M. J. (2005, November). Empirical evaluation
of the tarantula automatic fault-localization technique. In Proceedings of

the 20th IEEE/ACM international Conference on Automated software
engineering (pp. 273-282). ACM.

[21] Kaleeswaran, S., Tulsian, V., Kanade, A., & Orso, A. (2014, May).
Minthint: Automated synthesis of repair hints. In Proceedings of the

36th International Conference on Software Engineering (pp. 266-276).
ACM

[22] Kim, D., Nam, J., Song, J., & Kim, S. (2013, May). Automatic patch
generation learned from human-written patches. In Proceedings of the

2013 International Conference on Software Engineering (pp. 802-811).
IEEE Press.

[23] Kim, Y., Zu, Z., Kim, M., Cohen, M. B., & Rothermel, G. (2014,
March). Hybrid directed test suite augmentation: An interleaving
framework. In Software Testing, Verification and Validation (ICST),
2014 IEEE Seventh International Conference on (pp. 263-272). IEEE.

[24] Kusel, A., Schönböck, J., Wimmer, M., Kappel, G., Retschitzegger, W.,
& Schwinger, W. (2013). Reuse in model-to-model transformation

languages: are we there yet?. Software & Systems Modeling, 14(2), 537-
572.

[25] Le Goues, C., Nguyen, T., Forrest, S., & Weimer, W. (2012). GenProg:
A generic method for automatic software repair. Software Engineering,
IEEE Transactions on, 38(1), 54-72.

[26] Le Goues, C. (2013). Automatic program repair using genetic
programming (Doctoral dissertation, University of Virginia).

[27] Le Goues, C., Holtschulte, N., Smith, E. K., Brun, Y., Devanbu, P.,
Forrest, S., & Weimer, W. The ManyBugs and IntroClass benchmarks
for automated program repair. IEEE Transactions on Software
Engineering. In Press.

[28] Le Goues, C., Forrest, S., & Weimer, W. (2013). Current challenges in
automatic software repair. Software Quality Journal, 21(3), 421-443.

[29] Le Goues, C., Dewey-Vogt, M., Forrest, S., & Weimer, W. (2012, June).
A systematic study of automated program repair: Fixing 55 out of 105
bugs for $8 each. In Software Engineering (ICSE), 2012 34th
International Conference on(pp. 3-13). IEEE.

[30] Le Goues, C., Weimer, W., & Forrest, S. (2012, July). Representations
and operators for improving evolutionary software repair.
In Proceedings of the 14th annual conference on Genetic and
evolutionary computation (pp. 959-966). ACM.

[31] Liu, P., & Zhang, C. (2012, June). Axis: Automatically fixing atomicity
violations through solving control constraints. In Proceedings of the

34th International Conference on Software Engineering (pp. 299-309).
IEEE Press.

[32] Luke, S., & Panait, L. (2006). A comparison of bloat control methods
for genetic programming. Evolutionary Computation, 14(3), 309-344.

[33] Montana, D. J. (1995). Strongly typed genetic
programming. Evolutionary computation, 3(2), 199-230.

[34] Orso, A., Apiwattanapong, T., Law, J., Rothermel, G., & Harrold, M. J.
(2004, May). An empirical comparison of dynamic impact analysis
algorithms. InProceedings of the 26th International Conference on
Software Engineering (pp. 491-500). IEEE Computer Society.

[35] Perkins, J. H., Kim, S., Larsen, S., Amarasinghe, S., Bachrach, J.,
Carbin, M., ... & Rinard, M. (2009, October). Automatically patching
errors in deployed software. In Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles (pp. 87-102). ACM.

[36] Poli, R., Langdon, W. B., McPhee, N. F., & Koza, J. R. (2008). A field
guide to genetic programming. Lulu. com.

[37] Schulte, E., DiLorenzo, J., Weimer, W., & Forrest, S. (2013).
Automated repair of binary and assembly programs for cooperating
embedded devices. ACM SIGARCH Computer Architecture News, 41(1),
317-328.

[38] Sebesta, R. W. (2012). Concepts of Programming Languages. 10th Ed.,
Pearson.

[39] Sidiroglou, S., Giovanidis, G., & Keromytis, A. D. (2005). A dynamic
mechanism for recovering from buffer overflow attacks. In Information
security(pp. 1-15). Springer Berlin Heidelberg.

[40] Stumptner, M., & Wotawa, F. (1997, January). Model-based program
debugging and repair. In Proc. Ninth International Conference on

Industrial and Engineering Applications of Artificial Intelligence and
Expert Systems (IEA/AIE’96) (pp. 155-160).

[41] Wei, Y., Pei, Y., Furia, C. A., Silva, L. S., Buchholz, S., Meyer, B., &
Zeller, A. (2010, July). Automated fixing of programs with contracts.
In Proceedings of the 19th international symposium on Software testing
and analysis (pp. 61-72). ACM.

[42] Weimer, W., Fry, Z. P., & Forrest, S. (2013, November). Leveraging
program equivalence for adaptive program repair: Models and first
results. In Automated Software Engineering (ASE), 2013 IEEE/ACM
28th International Conference on(pp. 356-366). IEEE.

[43] Weimer, W., Nguyen, T., Le Goues, C., & Forrest, S. (2009, May).
Automatically finding patches using genetic programming.
In Proceedings of the 31st International Conference on Software
Engineering (pp. 364-374). IEEE Computer Society.

[44] Weimer, W. (2006, October). Patches as better bug reports.
In Proceedings of the 5th international conference on Generative
programming and component engineering (pp. 181-190). ACM.

[45] Wirsing, M., & Hoelzl, M. (2011). Rigorous Software Engineering for

Service-oriented Systems: Results of the SENSORIA Project on Software

Engineering for Service-oriented Computing (Vol. 6582). Springer
Science & Business Media.

[46] Yin, Z., Yuan, D., Zhou, Y., Pasupathy, S., & Bairavasundaram, L.
(2011, September). How do fixes become bugs?. In Proceedings of the

19th ACM SIGSOFT symposium and the 13th European conference on
Foundations of software engineering (pp. 26-36). ACM.

[47] Yoo, S., & Harman, M. (2012). Regression testing minimization,
selection and prioritization: a survey. Software Testing, Verification and
Reliability, 22(2), 67-120.

[48] Zeller, A. (1999, January). Yesterday, my program worked. Today, it
does not. Why?. In Software Engineering—ESEC/FSE’99 (pp. 253-267).
Springer Berlin Heidelberg.

[49] Monperrus, M. (2014, May). A critical review of automatic patch
generation learned from human-written patches: essay on the problem
statement and the evaluation of automatic software repair.

In Proceedings of the 36th International Conference on Software
Engineering (pp. 234-242). ACM.

[50] Qi, Z., Long, F., Achour, S., & Rinard, M. (2015). An analysis of patch
plausibility and correctness for generate-and-validate patch generation
systems. In Software Testing and Analysis (ISSTA), 2015 International
Symposium on (pp. 24-36). IEEE.

[51] Smith, E. K., Barr, E. T., Le Goues, C., & Brun, Y. (2015, August). Is
the cure worse than the disease? overfitting in automated program repair.
In Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering (pp. 532-543). ACM.

[52] Qi, Y., Mao, X., & Lei, Y. (2013, September). Efficient automated
program repair through fault-recorded testing prioritization. In Software

Maintenance (ICSM), 2013 29th IEEE International Conference on (pp.
180-189). IEEE.

[53] Motwani, R., & Raghavan, P. (1995). Randomized Algorithms.
Cambridge University Press.

