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Abstract— Since 2009 several scalable and promising techniques 

to automatic program repair have been proposed with each 

technique often accompanied with a prototype tool. These 

techniques work in different levels of code with various types of 

defects and designed for different programming languages. Now 

the subfield of automatic program repair is mature enough to 

merit evaluate existing techniques and tools. This evaluation 

helps us identify the strengths and weaknesses of current 

research and provides future direction. To this end, in this paper, 

we present a family of criteria grouped into seven sets for 

evaluating automatic program repair techniques and tools. 

Moreover, a five-level maturity model is proposed for the 

mentioned subfield. To the best of our knowledge, no research yet 

evaluates automatic program repair techniques and tools in a 

general, broad, and comprehensive manner and this is the first 

attempt towards this goal. We employed our criteria to three 

existing mutation-based techniques and their corresponding tools 

and reported the results of preliminary evaluation. The proof-of-

concept results demonstrate different aspects, capabilities and 

shortcomings of each technique and provide evidence to the 

applicability and utility of our criteria. 

Keywords- program repair; patch;  fault localization; fix 

localization; criteria 

I.  INTRODUCTION 

Software is still released with known and unknown bugs 
[43] due to several reasons: limitations in time and resources of 
testing and debugging, manual effort on fixing bugs, which 
makes it expensive and time consuming, and higher rate of 
faults detected by testing as compared to those that are fixed 
[25]. Post-release fixing of faults is even more expensive and 
adversely affects the credit of the company in the competitive 
market [26]. Moreover, it may compromise the critical and 
private user data. The results of studying the data from 139 
software companies in North America [5] represented that each 
one has spend about 22 million dollars per year to address 
software defects. Moreover, the results of investigations [46] 
delineate that among 2000 manual bug fixing, about 14 to 24 
percent were incorrect and 43 percent of them resulted in 
software crash, corruption, security concerns, and hang in 
system’s functionality. 

In response to these limitations, the research community 
started developing automatic techniques [3, 8, 11, 13, 26, 31] to 
program repair in 2009 based on the proposal of Arcuri et al. 
[4]. Since then several scalable and promising techniques have 
been proposed that work in different levels of code [25, 37] 

with various types of defects [25, 19] and designed for different 
programming languages [8, 22, 26]. Often each technique has 
come with a prototype tool to show the applicability and utility 
of the technique and to provide a way to evaluate it. Now the 
subfield of automatic program repair is mature enough to merit 
evaluation of existing techniques and their corresponding tools 
to identify the benefits and shortcomings of them.  

In ICSE’14 Monperrus reviewed [49] the PAR technique 
[22] and proposed three criteria to evaluate automatic program 
repair techniques. Then, in ISSTA’15, Qi et al. [50] evaluated 
the patches of three automatic program repair techniques using 
a few criteria. However, these publications used either small 
number of criteria which limits comprehensive evaluation and 
comparison, or the criteria are targeted towards evaluating the 
results of some few specific techniques which limits 
generalization. Moreover, comparing two given techniques 
implicates that they must share many common features to make 
the comparisons consistent and meaningful in terms of 
theoretical and empirical aspects [51]. In their evaluations, 
Smith et al. [51] selected GenProg [25] and TrpAutoRepair 
[52] for comparison because they share sufficient common 
characteristics. Trivially, this important requirement does not 
often hold for diverse set of existing techniques. A similar 
concern lies in the fact that many of repair techniques are 
actually randomized algorithms [53]. Evaluating and 
comparison of such algorithms are non-trivial. Then, how can 
we evaluate and compare existing repair techniques? 

In order to address these issues and to formalize evaluation 
of current techniques and tools we present in this paper, a 
family of 30 (mostly qualitative) criteria with total of 62 first-
level sub-criteria and total of five second-level sub-criteria. The 
criteria are grouped into seven sets of interrelated criteria. Most 
of these criteria can be measured objectively. For few of those 
criteria that need subjective measurements, we present 
guidelines to mitigate subjectivity. This is because the criteria 
are intended to yield the same results of investigation by every 
user. Moreover, the criteria are intended to consider 
characteristics of each technique and its tool associated with 
architectural properties, internal constructs, design decisions, 
constituting components, optimization aspects, and the like. 
Hence, the criteria can be measured with precise understanding 
of the technique itself. In case where standard common 
benchmarks are present, one can compare techniques in terms 
of performance metrics. However, benchmarks come for a 
specific language such as C [27] and other techniques that are 
designed for languages such as Java [3] or Eiffel [41] fail to 



benefit from such benchmarks. As a result, a comparison of 
techniques in terms of performance and non-functional 
properties are unlikely to succeed. Our criteria, however, aims 
to overcome this issue by providing a way for evaluating 
techniques themselves and for comparison with other 
techniques without reliance on benchmarks and independent of 
implementation and repair scenario. This also justifies why 
some of them tend to be more general rather than specific.  

We categorized our criteria into two broad classes: intrinsic 
and extrinsic. Most of the criteria belong to the first class and 
few of them belong to the second one. For each criterion, some 
possible values are enumerated which helps identify the future 
values of each criterion for newer techniques. In addition, 
potential benefits and/or drawbacks behind 
satisfaction/dissatisfaction of each criterion are presented that 
helps incorporate useful features in the design of new 
techniques. We also propose a five-level maturity model for the 
automatic program repair techniques. This model facilitates 
determining the status of an automatic program repair 
technique in the literature. To the best of our knowledge, no 
research yet evaluates automatic program repair techniques and 
tools in a general, broad, and comprehensive manner and this is 
the first attempt towards this goal. Overall, the criteria are 
designed to help investigate the current body of knowledge in 
the context of automatic program repair from different 
viewpoints. The results of such investigation provide insightful 
guidelines for future research to build sophisticated techniques 
that are more scalable and have potential to be used in 
industrial practice. In order to evaluate the criteria, we applied 
them to three existing mutation-based techniques. The results 
serve us as a proof-of-concept and demonstrate the 
effectiveness of the proposed criteria. Applying the criteria on 
the other techniques and an extensive and thorough evaluation 
remain as future work.  

The main contributions of this paper are as follows: 

• A family of criteria and sub-criteria that is specific to 
evaluate automatic program repair techniques and 
tools. The criteria are grouped into seven sets of 
interrelated criteria and each criterion belongs to 
either of two classes: intrinsic or extrinsic. 

• Some values are enumerated for each criterion or sub-
criterion according to the existing techniques and 
tools. In addition, potential benefits/drawbacks of 
each criterion are explained where possible. 

• A five-level maturity model for automatic program 
repair techniques and tools. 

• The results of studies on evaluating three existing 
techniques for automatic program repair using the 
proposed criteria. 

The remaining of this paper is organized as follows: 
Section II briefly reviews automatic program repair concepts. 
We present the motivation and our criteria to evaluate program 
repair techniques in Section III. Section IV reports the results 
of employing criteria to some of existing methods. Discussion 
and limitations are given in Section V. Related work is 

discussed in Section VI. Finally, conclusions are mentioned in 
Section VII. 

II. AUTOMATIC PROGRAM REPAIR 

There exist two approaches to make correct programs [17, 
26]: one class includes techniques that are applied in software 
development process such as rigorous software engineering 
[45]. This class cannot be applied to existing legacy software. 
The second class consists of techniques that can be applied to 
the software itself such as verification, testing, and debugging. 
Verification techniques provably check the correctness of 
programs. However, they need formal specifications which are 
rare in practice in addition to scalability issues to make them 
applicable in industrial practice [26]. Currently, software is 
tested against a representative set of test cases to detect faults. 
The faults are then localized to find the root cause or suspicious 
regions of the code. Finally the bug will be fixed. However, 
bug-fixing is still a manual effort which is time-consuming and 
may introduce new faults [25, 28]. Besides, the rate of fault 
detection by testing is higher than the rate with which faults are 
fixed. This motivates the research community to seek for 
automatic techniques to program repair. 

Empirical investigations [10] showed that programmers do 
not produce programs at random and the buggy program is 
usually close to the correct state. Therefore, we can favor this 
property to find correct programs by few number and small 
modifications. A sequence of modifications to the buggy 
program to correct it is usually called a patch. The number of 
possible modifications over buggy program in infinite despite 
the fact that required modifications is mostly small and 
insignificant [3]. Hence, automatic program repair techniques 
need to employ ways to substantially reduce this space. One 
way is to map automatic program repair problem to a search 
problem such as those in search-based software engineering 
(SBSE) [14]. 

In order to establish automatic support on program repair, 
two approaches exist. One class of approaches is meant to 
generate comments or recommendations that serve as 
debugging assistance for developers [18, 21]. The second class 
actually fixes the bug by modifications on the code [25]. This 
second class consists of two broad categories of automatic 
program repair techniques [27], namely correct-by-
construction and generate-and-validate. The former produces 
one or few number of correct programs using sound techniques 
[19, 31]. The latter generates multiple candidate patches that 
are then evaluated by heuristic methods and the most 
appropriate one is returned [29]. The input to an automatic 
program repair technique is a faulty program in source, binary, 
or assembly code along with required behavior and an evidence 
of the fault [28]. The latter pieces of information are typically 
provided via test cases or some kind of specifications. The 
automatic program repair technique often fixes the bug by 
generating a patch, runtime modifications, or a dynamic jump 
to the new code [26]. Note that current techniques to automatic 
program repair are roughly unable to replace human developer 
[25] due to many reasons. This is especially the case for test 
case-based techniques because they cannot consider any aspect 
or design goal beyond what can be manifested by test cases. 
Note also that absolute “automation” is by no means the case 



for existing techniques due to oracle generation problem, the 
need to initialize and dispatch and other reasons [25, 28]. 

III. MOTIVATION AND THE PROPOSED CRITERIA 

As the number of programming languages (PL) [38] and 
model transformation languages 1  (MTL) [7] increases, 
software developers need to leverage various evaluation criteria 
[24, 38] to identify their strengths and weaknesses. This would 
help them to decide on an appropriate language, among diverse 
set of languages, for the task at hand. The results of evaluation 
would also provide helpful insights for the design of more 
effective and efficient languages in future. Similarly, the 
research community has developed promising techniques and 
tools in recent years for the subfield of automatic program 
repair [3, 22, 26, 37]. Introducing these techniques led to an 
extent of maturity that merits to be considered as a level of 
maturity. At this stage, evaluation of existing techniques can 
expose the potentials and shortcomings of each technique in 
isolation. It can also provide a way to compare and contrast 
different techniques and tools.  

Evaluation and comparison of current repair techniques 
face several impediments: 

• We need to standard common benchmarks whose 
absence make comparison nonsensical. However, the 
current research community faces substantial 
limitations in this line of work.  

• The only available systematically-constructed 
benchmark we are aware of, much recently created by 
Le Goues et al. [27], consists of C programs. Hence, 
other techniques designed for Java [3], Eiffel [41], or 
other languages fail to use it.  

• Even in presence of standard benchmarks and in case 
where the target language of subject techniques are 
the same, the implementation of a certain technique 
may not be available, or the detailed settings of 
parameters used in the tool may not be exactly 
presented [27]. 

• Comparison of two given techniques implicate that 
they share many common characteristics to make 
consistent and meaningful results from both 
theoretical and empirical aspects. This requirement 
does not hold for diverse set of current techniques as 
they establish different approaches.  

• Many of current repair techniques are based on 
randomized algorithms. Evaluating such algorithms is 
non-trivial since many issues must be carefully taken 
into account [51]: sample size, statistical tests, cross-
validation, and bootstrapping. 

This paper presents domain-specific evaluation criteria to 
be used in the subfield of automatic program repair. Putting a 
new technique for automatic program repair in these criteria 
allows for a fast yet accurate assessment of the technique itself. 
It also provides a framework to help compare a certain 

                                                           
1 MTLs are used in the context of model-driven software engineering 
(MDSE) [5] 

technique with other existing techniques. To the best of our 
knowledge, this is the first report to propose evaluating of 
automatic program repair techniques using a general, 
comprehensive, and mostly objective family of criteria 
dedicated for this task. The novelty of our work lies in the fact 
that in addition to present a broad family of criteria, we also 
present some of the possible values for each criterion along 
with the relevant characteristics. This helps extend the possible 
values by appearance of new techniques accordingly. 
Moreover, the potential benefits and/or drawbacks behind 
satisfaction or dissatisfaction of each criterion are also given to 
guide future research for developing more sophisticated and 
effective techniques.  

We grouped our criteria in seven sets of interrelated criteria 
which are shown in Tables I to III. Except for the first group 
which contains independent criteria, each other group consists 
of the sub-criteria related to a major criterion. We propose to 
divide the criteria into two broad classes: intrinsic and 
extrinsic. Intrinsic criteria cover technical aspects that root in 
the technique itself in terms of design, development, and 
evaluation. By contrast, extrinsic criteria deal with 
environmental aspects and are influenced by external factors. 
Most of our criteria are intrinsic and few of them are extrinsic.  

We have included those criteria that target automatic 
program repair techniques and tools, that are general enough to 
evaluate them independent of some (possibly unclear) details 
and without reliance on running the tools, that can be perceived 
and measured by understanding  the technique and evaluations 
themselves, and that can be measured objectively as much as 
possible. We have also excluded each criterion that needs any 
form of execution of the tool. Since each technique and its 
corresponding tool map to each other, it is reasonable to 
consider them together when evaluation.  

In addition to the criteria, we propose a maturity model as a 
separate criterion with five levels. This model takes as input an 
automatic program repair technique and places it in the fittest 
level. It would establish a metric to facilitate identifying where 
a certain technique fits in the increasing body of the automatic 
program repair literature. 

In the remaining of this section, we give the mentioned 
criteria. Each criterion may have multiple levels (at this time 
only two levels) of sub-criteria. For each criterion or sub-
criterion, some possible cases are also given. The number of 
criteria and their possible values can be further extended as the 
subfield grows. The criteria are shown in Table I to Table III. 
Upper part of Table I shows single intrinsic criteria; i.e. those 
with no sub-criteria. The lower part of Table I and other tables 
show the criteria that have first-level or second-level sub-
criteria. Note that extrinsic criteria start with “E”. We then give 
explanations on criteria starting from Table I to Table III 
sequentially. 

The general approach: Some of the successful approaches 
work based on evolutionary computations (EC) such as genetic 
programming (GP) meta-heuristic [36]. The others work based 
on behavioral models [8] and so on. The particular approach of 
each category should be explicitly stated. 



Repair approach: Correct-by-construction approaches 
produce single or few repairs that are provably sound [27]. 
They work based on some formulation of program such as 
formal specifications. Generate-and-validate approaches 
produce multiple repairs heuristically and test them against a 
fitness function [42]. 

Type of algorithm: An algorithm with at least one 
randomized input or step is considered as stochastic algorithm 
such as GP [36]. By contrast, deterministic algorithms always 
produce the same output. Stochastic and deterministic search 
demonstrate different tradeoffs in the search space [27]. 

The type of search: If all elements of a repair space are 
enumerated, it is exhaustive; otherwise the search space may be 
reduced through some constraints in which the search is 
constraint-based [25, 37]. 

Type of execution: The algorithm may be distributed in 
essence to multiple machines [37]; otherwise it may be 
centralized to a single machine [43]. 

Maturity: We propose automatic program repair maturity 
model (APRMM) with five levels to assess the maturity level 
of an automatic program repair technique. These levels are as 
follows: Proof-of-concept (PoC), confidence or reliability 
(CoR), broad recognition (BR), optimization (OPT), and 
industrial practice (IP). The descriptions for these levels are 
shown in Table IV. Drawing strong conclusions based on the 
results provided by exact statistical tests, comparisons, human 
studies and similar means are required at each level. At this 
time, no technique is at level 5. Few techniques moved from 
level 3 toward 4; however, they are not yet placed at level IV. 

Scalability: This criterion has been previously defined by 
Le Goues [26]. Here, we extend this definition. Particularly, 
three factors affect scalability: capability to work on real-world 
programs with real-world defects; ability to repair programs 
from thousands to millions lines of code; comparable to human 
repair in terms of time and monetary cost. Lack of the first 
factor makes an automatic program repair technique 
unscalable. If the technique satisfies the first factor, it is 
considered as partially-scalable. A technique with either the 
second or the third factors, in addition to the first one, is 
considered semi-scalable. Full-scalable technique satisfies all 
three factors. 

Reliance on formal specification: Some of the techniques 
especially those that make sound patches [31, 41], rely on 
different kinds of formal specifications to evaluate or construct 
patches [8]. The exact type of specification should be explicitly 
specified. Currently, however, formal specifications are not 
common in practice, they need heavyweight tools, they are 
hard to use and time-consuming [26]. 

Expressivity: An expressive automatic program repair 
technique is one that can repair various types of programs 
(generic programs) with various types of defects (generic 
repair) [26]. 

Human competitive: An automatic program repair 
technique is said to be human competitive if it satisfies four 
properties: full-scalable, expressivity, minimum-quality repair 
(see overall patch quality), and comparable to human repair in 

terms of time and monetary cost [26]. Note that full-scalability 
implies satisfaction of the fourth property. Moreover, if the 
technique is multi-language (see language generality), then it 
can be called super human competitive. 

Desired functionality and evidence to the fault: In order 
to repair a fault, a technique needs to know the desired 
behavior (to preserve) and evidence to the fault (to eliminate). 
Positive test cases typically are employed to show the desired 
behavior and negative test cases to expose the fault. This is 
effectively practical because test cases are always available or 
can be generated. However, test cases do not provide sufficient 
confidence to the quality of software [3, 28]. By contrast, 
formal specifications provably evaluate programs. However, 
they are rare in practice, especially for legacy software. Hybrid 
techniques may leverage test cases and formal specifications to 
benefit from the both worlds. 

Instrumentation: Some techniques require adding extra 
code to the program to gather different information. This 
information is typically gathered against the execution of test 
cases and specify statements that are exercised when execution 
of positive and negative test cases. Fault localization and fix 
localization [28] (suitable code to be used for fixing) benefit 
from this information. 

Most time-consuming part: Some parts of an algorithm 
may be bottlenecks and are most time-consuming parts. For 
example, in test case-based techniques [29, 37] fitness 
evaluation needs to run the whole positive and negative test 
cases on a program to measure its desirability. This would be 
very time-consuming as compared to other parts. 

Applied fault localization techniques: Most techniques [3, 
25, 37] apply simple fault localization techniques to reduce the 
infinite space of modifications. For example, statements 
executed on running positive and negative test cases are 
identified and weighted with heavier weight on statements that 
exclusively executed on negative test cases. Some techniques 
employ particular localization methods such as Tarantula [20]. 
Effective fault localization for effective program repair is 
difficult and remains an unsolved problem [25]. Fault 
localization is roughly impossible for some categories of faults 
such as nondeterministic ones [25]. 

Syntactically ill-formed programs: This refers to whether 
the technique outputs programs that do not compile due to 
syntactical issues such as imbalance parentheses or the like 
[13]. 

Semantically ill-formed programs:  The output program 
of a technique may be semantically wrong due to for example 
using a variable out of score [13]. Applying strongly-typed GP 
[33] in evolutionary approaches prevents from this problem. 

Target system or context of repair: A technique may be 
designed to work on, for example, legacy software in C, 
embedded program in assembly, and so on. 

Input: This specifies the requirements of an automatic 
program repair technique to start. For example, a faulty 
program along with some positive test cases and a negative test 
case are typical inputs. Additionally, some of techniques 
especially evolutionary ones include lots of parameters that 



need to be set before the repair task commences. There can be 
at least two choices: a default parameter setting (which has 
been shown to be optimal in experiments) is used for all 
repairs; or the user sets parameters at the beginning of each 
repair task. 

Output: This is the outcome of an automatic program 
repair technique. A patch is the normal output. The repair 
technique may make runtime modifications or set a jump to the 
new code. The output patch can have at least two levels: an 
initial patch which is the immediate output of repair technique 
and the final patch which is minimized or optimized version of 
initial patch against redundant codes added during evolution. 

Available tool support: Often, a prototype tool is 
constructed to support for evaluation and effectiveness of a 
proposed technique. This tool can be made public and available 
to download for other researchers to further investigate the 
technique, to reproduce the results, or to directly compare the 
obtained results with their own. The other case is to explain the 
characteristics and technical aspects of the tool and the 
obtained results. 

Time and space complexity: Timing and space 
complexities are differently measured for each technique. For 
an evolutionary-based technique, the number of fitness 
evaluations may be a scenario-independent metric to estimate 
time complexity. Similarly, the memory needed to construct 
individuals and generations may be an indicative of the space 
complexity. 

Industrial popularity and acceptance: This refers to the 
fact that whether the technique is used in industrial practice or 
not. It can be determined according to valid available reports. 

Real-world share: This criterion measures the amount of 
real-world software produced by the language on which the 
technique works and is measured by three elements: the 
number of available code repositories for that language; the 
number of available jobs; and the number of web searches for 
that language. These three pieces of information can be simply 
obtained from online websites such as GitHut2, sitepoint3, and 
TIOBE Index4 respectively. 

Academic popularity and acceptance: There exist at least 
two cases where a technique becomes popular in academia: it is 
often used as baseline for comparison; its best practices and 
design decisions will be adapted in developing new techniques. 

Type of studies: Systematic studies [27, 29] follow a 
certain methodology and are reproducible. They are conducted 
according to standard and well-defined procedures such that 
the results can be generalized and possible biases in datasets, 
techniques, and underlying tools are minimized. Some other 
studies may not be established systematically and thus are less 
reliable. 

Type of evaluations: Longitudinal studies [27] are several 
defects in a program over the time. Each time a defect is 
repaired and in case of exposing another defect, the program 
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undergoes another repair. Latitudinal studies [27] include 
various programs and defects and measure the success of repair 
in multiple programs. 

Source of dataset: Datasets of experimental studies in the 
context of fault detection, localization, and program repair may 
be taken from three sources [27]: datasets in the wild are those 
that were taken from ad hoc case studies, manual search 
through databases, industrial partnerships, and the like. 
Datasets might be collected through systematic search to help 
prevent from biases. They may also come from existing 
repositories. For the last case, the design purposes and 
suitability of datasets should be considered to make sense for 
the current study. Existing datasets are either benchmark 
developed by other developers or a typical non-benchmark 
dataset just to establish an evaluation. 

Using cloud environments: When evaluating a certain 
technique, it can be run on (public) cloud resources to save 
time. 

Type of experiments: Controlled experiments are 
conducted against programs with a few reproducible defects. 
These programs are often of medium and small sizes with 
synthesized test suites generated to satisfy a certain coverage 
criteria. Besides, they often contain seeded faults that are not 
indicative of real-world faults. By contrast, case studies are 
typically conducted on real-world (larger) programs with real 
faults. The obtained results are more general provided that 
biases in dataset were reduced or minimized. Controlled 
experiments help perform proof-of-concept evaluations of a 
technique; however due to major biases often present in 
dataset, the results typically cannot be generalized. 

Type of programs: A technique may be capable of 
handling programs of various arbitrary types or it may work 
only on application-specific programs such as web servers 
[43]. The repair technique may have potential to be employed 
to construct a hybrid system such as the closed-loop long 
running system comprising web server and an intrusion-
detection system [25]. The first class of studies implies generic 
techniques of program repair or program generality property. 
To note that there exist techniques that claim to be generic 
though they lack of sufficient experimental evidence to support 
for their claim. Nevertheless, we consider them generic. 

Size of programs evaluated: The programs used in 
experiments are of different sizes. We categorize them in four 
classes: small size stands for programs that have less than 100 
lines of code; programs with more than 100 and less than 1000 
lines of code are categorized as medium; programs that are 
larger than 1000 lines of code and less than 100,000 are large; 
and programs larger than 100,000 lines of code would belong 
to very large class. 

Type of analysis: The results of experiments can be 
analyzed qualitatively or quantitatively. Moreover, evaluations 
can be subjective or objective. Objective analysis makes 
experiments and results reproducible and directly comparable 
to other techniques. A combination of these cases can also be 
made. 

Metrics: A number of metrics have been used to evaluate 
automatic program repair techniques. Among them, some need 



further explanation. Patch readability is important due to 
maintenance activities and future evolutions of the software. 
Number of steps refers to the primary operations of a certain 
technique. Efficiency typically measured by the number of 
fitness evaluations for evolutionary approaches. The benefit of 
this choice is that it is independent of any specific scenario to 
measure the repair time. Average time to repair is typically 
measured based on wall-clock time. Patch size is usually the 
number of lines of code. Some of the techniques minimize the 
obtained patch to eliminate problems such as code bloat and 
redundant code and the like. These techniques produce an 
initial patch and a final patch. Measurements are repeated for 
both of these steps. 

Comparison to other techniques: Studies in which 
available benchmarks were applied can be directly compared to 
other techniques. Besides, the defects should be reproducible. 
Experimental setup of comparing studies should be as much 
consistent as possible. 

Defects are reproducible: Defect reproducibility is an 
essential property to make datasets reusable in other studies. 
They provide possibility of comparison with other techniques. 
In order to reproduce a defect and replicate the results, six 
elements should be available [27]: the source code of the 
version of program that includes the fault; the test suite as 
partial or specifications (by invariants, annotations, or 
supporting documents) as complete indicative of correct 
behavior and failing test case as evidence to fault; the exact 
steps to run test suite for a tool; the suitable compiler and its 
version and compiling scripts; the execution platform to expose 
the fault including operating system, libraries, particular 
hardware architecture, and supporting scripts; and the exact 
configuration and parameter values. 

Defect scenarios are well-defined: In order to perform a 
comprehensive evaluation on a defect, we need defect scenario 
which requires reproducible defects and human-written patch 
as an optional element to provide a baseline comparison [27]. 

Results are replicable: To measure this metric, we should 
check whether the defects are well-defined and the 
configuration, experimental setup, and values of parameters are 
exactly detailed. Note that if the repair technique includes 
stochastic element, difficulties in replicating of results will 
arise [27]. An exact report of the experiments with sufficient 
details mitigates this issue. 

The way of patch production: A technique may produce a 
patch by random modifications [29] or provably produce sound 
patches relying on formal specifications. 

Source of repair code: A repair technique needs to find 
appropriate code to repair a defect which is called fix 
localization [28]. This code may come from existing library of 
program code or pre-defined templates. Another option is to 
use the code of the program under repair without any 
limitation. Using the code of the repairing program itself roots 
from the intuition that a programmer that makes a fault, is 
likely to address this fault in another location [25, 26]. An 
alternative way is to use a certain part of program to reduce the 
large space of fix code and resolve some of the issues. For 
example, fix space may be defined as statements that have 

executed by at least one positive test case and their variables 
are in the scope of target code in which fix code is added [29]. 
Similar approach can be employed when repairing assembly 
code [37]. 

Number of repair alphabets: Various statements of the 
programming language of the program under repair are 
alphabets or primitives for repair techniques. Assembly 
languages have higher number of alphabets than a high-level 
language such as C. However, they are simpler and often have 
fixed size. 

The size of repair alphabets: As mentioned in previous 
criterion, the size of statements may be fixed or variable. For 
high-level languages such as C or Java, the size can be roughly 
of arbitrary size. For assembly language it can be considered as 
fixed size. 

Complexity of repair alphabets: Complexity of 
statements is very diverse for high-level languages. More 
precisely, statements in high-level languages can be combined 
and written in many (complex) ways. This is not the case for 
low-level languages. 

Human-validated and acceptability: In order to further 
investigate the quality of the repairs, some studies perform post 
facto manual code review by human developers. This will 
substantially increase the confidence to the reported results and 
effectiveness of the technique. 

Comparison to human patches: In case where studies are 
conducted around standard benchmarks, comparison to human 
patches will manifest the effectiveness of the technique and 
gives stronger confidence in the results of evaluation. Note that 
the benchmark should contain human-written patches per each 
defect in programs. When patches resulted from automatic 
techniques are compared with manual human patches in terms 
of cost (monetary, wall-clock, etc), at least three potential 
complexities may arise [29]. For one, identifying defects 
require test cases and test case generation makes additional 
costs often in development of open-source software 
development. For two, patches produced by automatic 
techniques need further inspection and validation by human 
developers. Finally, human patches are shown in many cases to 
be imperfect [46] as was reported in Section I. 

Runtime overhead: A repair technique may add extra code 
for runtime monitoring or other similar purposes. This code 
often leads to running overheads in the repaired program [11]. 

Large augmented code: The extra code added by repair 
technique may be so large that makes significant increase in the 
final code size [39]. 

Steps for further quality: There exist techniques that 
validate the quality of patches in multi-level manner. For 
example, a patch that passes all positive and negative test cases 
during evolution is considered to be valid [3]. After termination 
of repair algorithm, the output patch is executed against a 
larger set of test cases to provide more confidence in its 
quality. A patch that passes this stage is called robust [3]. This 
is essentially effective because validation of program under 
repair occurs many times during consecutive iterations of 



repair algorithm and large sets of test cases make the technique 
heavily time-consuming. 

Internal metrics used to validate: What are internal 
metrics used to validate the quality of the patch? Compilation 
of patched programs and testing are such (simple) metrics. 
Testing are typically accomplished using test cases and bug-
inducing inputs. The type of testing differs according to the 
type of defects and programs. For instance, in the context of 
security applications, fuzz testing is used to measure the 
functionality of programs for quality purposes. 

External metrics used to validate: A comparison to 
human-written patches in terms of size and time-to-repair are 
external metrics to validity. The severity of the defect in real-
world software is another external metric. This information 
need standard benchmarks [27] that report them. However, at 
the time of writing this paper, they are not available. Validation 
using the mentioned metrics is an initial step to justify applying 
repair techniques in industrial practice. 

Minimized or optimized: A repair task is very close in 
spirit to a plastic surgery [16]. After an initial patch is 
generated with respect to minimal requirements, it may contain 
redundant or dead code that does not contribute to the correct 
functionality of the program. A repair technique is expected to 
leverage additional post-processing step to eliminate any kind 
of redundancies. Delta-debugging and structural differencing 
are common techniques used [1, 48]. These cleanup processing 
may be done on the high-level, assembly code or abstract 
syntax tree (AST) of the program. 

Fitness function: During the process of patch generation, 
intermediate programs are generated that should be measured 
for desirability to direct the process towards the correct patch. 
Particularly this is the case for evolutionary techniques via a 
fitness function [25]. This function may leverage test cases, 
formal specifications, or a combination for fitness evaluation. 
At any rate, measuring desirability by test cases is time-
consuming and a major limitation in test case-based 
techniques. Most of the existing techniques are single-objective 
in that they target only one aspect of the program. 

Overall patch quality: This criterion has three cases: 
minimum, medium, and high. A patch that passes all positive 
and negative test cases (i.e. fixes the defect and preserves the 
required behavior) and does not introduce new faults or 
vulnerability is a minimum-quality patch. A minimum-quality 
patch without running overhead or large augmented code 
(possibly redundant) is a medium-quality patch. Finally, a 
high-quality patch is a medium-quality patch that is also 
validated and accepted by human developer. Note that Le 
Goues defined high-quality patch [26] equivalent to our 
minimum-quality level. By contrast, our definition here is 
intended to be more general and comprehensive. 

Reliance on test cases: A number of state-of-the-art 
techniques for program repair need test cases as a major 
element. Test cases are prevalent in practice or can be 
generated using huge number of test case generation techniques 
available [2]. However, exhaustive testing using the whole test 
suite is infeasible due to constraints in testing time and 
resources. Thus we need to select an indicative subset of test 

cases which is a challenging task [47]. Less confidence in the 
software is another concern. 

Source of test cases: How should we find the required test 
cases? They may come from existing test suites, or can be 
generated automatically, or may be provided by human 
developers. 

Co-evolution of test cases: As the program evolves and its 
structure mutates, test cases may no longer validate the 
evolving program. Arcuri proposed to co-evolve test cases with 
programs similar to prey and predator in order to help 
convergence rate [4]. We propose to use test suite 
augmentation (TSA) techniques [23] to co-evolve test cases. 

Measuring quality of test cases: The quality of test cases 
is mainly measured through code coverage criteria or fault-
exposing potential [26]. 

Method to select test case: Since exhaustive regression 
testing is infeasible, we need to select a representative set of 
regression test cases. Test case selection, test suite reduction, 
test case prioritization [47], or impact analysis [34] techniques 
are common. 

Oracles: A critical requirement of test case-based 
techniques is an oracle which is the expected output of program 
against running a test case. Oracles are typically provided in 
studies. However, full automation of repair techniques 
necessitates automatic oracle generation [15], which remains a 
challenging task. 

Type of evolutionary approach: GP has been the most 
applied meta-heuristic in current techniques. However, other 
methods such as hill climbing were also used. 

Code bloat: This is a problem which mostly occurs in GP. 
When GP modifies the code during evolution, redundant code 
may be added that does not contribute to the code responsible 
for repair. There are a number of bloat control mechanisms in 
the literature [32] to resolve the problem. Existing research 
employed methods to control bloat in automatic program repair 
techniques [25]. 

Type of mutation operator: For the case of GP-based 
techniques, mutation is an essential operator on individuals. In 
the literature of common GP techniques, mutation is 
responsible for exploitation of current individual [36] by 
changing a single bit. However, mutation in GP-based program 
repair techniques accounts for both exploration and 
exploitation [36] by changing a statement. In fact, mutation is 
customized for program repair context. Three operations often 
occur for mutation: insert, delete, or replace. This modification 
may apply on AST [13], assembly code [37], list of edits [29], 
and so on. 

Type of crossover operator: Since developers do not write 
programs at random, a faulty program is assumed to be close to 
correct one [3, 10]. Hence, crossover does not significantly 
contribute in the context of program repair and would have a 
low rate. One-point crossover and variations of unit crossover 
have been mostly used in current techniques [36]. Crossback is 
another type of crossover in which crossover is performed on 
an individual and the original faulty program [36]. 



TABLE I.  SINGLE INTRINSIC CRITERIA (UPPER), EXTRINSIC CRITERIA, AND SUB-CRITERIA FOR ‘EVALUATION’ CRITERION 

Criterion Some possible values T1 T2 T3 

The general approach 1) Evolutionary, 2) Non-evolutionary 1 1 1 

Repair approach 1) Correct-by-construction, 2) Generate-and-validate 2 2 2 

Type of algorithm  1) Deterministic, 2) Stochastic 2 2 2 

The type of search 1) Exhaustive, 2) Constraint-based 2 2 2 

Type of execution 1) Centralized, 2) Distributed 1 1 1, 2 

Maturity  1) PoC, 2) CoR, 3) BR, 4) OPT, 5) IP 1 3 2 

Scalability  1) Not scalable, 2) Partially-scalable, 3) Semi-scalable, 4) Full-scalable 2 4 4 

Expressivity 1) Yes, 2) No 1 1 1 

Human competitive  1) Yes, 2) No 2 1 1 

Reliance on formal 
specification 

1) Yes, 2) No 2 2 2 

Desired functionality and 
evidence to the fault 

1) Test case, 2) Formal specification, 3) Hybrid 1 1 1 

Instrumentation  1) Yes, 2) No 1 1 2 

Most time-consuming part 1) Fitness function 1 1 1 

Applied fault localization 
techniques 

1) Weighting statements by test cases, 2) Particular technique, 3) Existing 
technique 

2, 3 1 2 

Syntactically ill-formed 
programs 

1) Yes, 2) No 2 2 1 

Semantically ill-formed 
programs 

1) Yes, 2) No 1 1 1 

Target system or context of 
repair 

1) Legacy software, 2) Embedded system, 3) Object-oriented software 3 1 2 

Input Faulty program in various forms (1: source, 2: binary, 3: intermediate), 4) 
Test cases (4: positive, 5: negative), 6) Formal specifications, 7) Parameter 
settings 

1, 4,5, 7 1, 4, 5, 7 2, 4, 5, 
6 

Output  1) Textual patch or repaired program, 2) List of edits and changes, 3) 
Runtime modifications, 4) Jump to the new code 

1 2 1 

Available tool support 1) Yes, 2) No 2 1 2 

Time and space complexity 1) Typical complexities to run evolutionary algorithms such as GP, but 
optimized due to several design decisions 

1 1 1 

E – Industrial popularity and acceptance 1) Yes, 2) No 2 2 2 

E – Real-world share #Code repositories  222,852 73,075 2,264 

#Current jobs  18% 9% 0.0% 

#Web searches  19.57% 15.62% 1.81% 

E – Academic popularity and acceptance Comparison?  1) Yes, 2) No 2 1 2 

Adaptation?  1) Yes, 2) No 2 1 2 

Evaluation T1 T2 T3 

Sub-Criteria Some possible values  

Type of studies 1) Systematic, 2) Non-systematic 1 2 1 

Type of evaluations 1) Longitudinal, 2) Latitudinal 2 2 2 

Source of dataset  1) In the wild, 2) Systematic search, 3) Existing data  1 2, 3 3 

Using cloud environments 1) Yes, 2) No 3 2 1 

Type of experiments 1) Controlled, 2) Case studies 1 2 2 

Type of programs  1) Generic, 2) Application-specific 1 1 1 

Size of programs evaluated 1) Small, 2) Medium, 3) Large, 4) Very large 1 1, 2, 
3, 4 

1, 2, 
3 

Type of analysis 1) Qualitative or 2) Quantitative, 3) Subjective or 4) Objective 2, 4 1, 2, 
4 

1, 2, 
4 

Metrics 1) Number of patched defects, 2) Time to repair, 3) Monetary cost, 4) Patch 
size, 5) Patch complexity or readability, 6) Memory, 7) Success rate, 8) 
Number of steps required to obtain patch, 9) Efficiency, 10) Number or 
percent of positive and negative test cases, 11) Program size, 12) 
Compilation (absolute time or percent of total time), 13) Measurements for 
original and final patch, 14) Technique-specific metrics such as weighted 
path 

8, 
11 

2, 4, 
7, 9, 
10, 
11, 
12, 
13, 
14 

2, 6, 
7, 9, 
11, 
14 

Comparison to other techniques 1) Yes, 2) No 2 2 2 

Defects are reproducible 1) Yes, 2) No 2 1 1 

Defect scenarios are well-defined 1) Yes, 2) No 2 1 1 

Results are replicable 1) Yes, 2) No 2 1 1 

 

 

 



TABLE II.  4 CRITERIA ALONG WITH THEIR SUB-CRITERIA 

Patch and patch quality T1 T2 T3 

Sub-Criteria Some possible values  

The way of patch production 1) Sound, 2) Stochastic 2 2 2 

Source of repair code 1) Pre-defined library, 2) Clamp-variable-to-value, 3) Templates, 4) 
Existing program code, 5) Generating new code, 6) Fixloc space, 7) 
Constrained assembly code  

4 6 4 

Number of repair alphabets  1) Low, 2) High 1 1 2 

The size of repair alphabets 1) Fixed, 2) Variable 2 2 1 

Complexity of repair alphabets 1) Low, 2) High 2 2 1 

Human-validated and acceptability 1) Yes, 2) No 2 1 2 

Comparison to human-patches 1) Yes, 2) No 2 1 2 

Running overhead 1) Yes, 2) No 2 2 0 

Large augmented code 1) Yes, 2) No 2 2 0 

Steps for further quality 1) Valid, 2) Robust 1, 
2 

1 1 

Internal metrics used to validate 1) Testing, 2) Compilation 1, 
2 

1, 2 1, 2 

External metrics used to validate 1) Human time-to-repair, 2) Size of human patch, 3) Severity of defect 0 0 0 

Minimized or optimized? 1) Yes, 2) No 2 1 2 

When  1) During patch generation, 2) After patch 
generation 

0 2 0 

Applied techniques 1) Delta-debugging, 2) structural 
difference 

0 1, 2 0 

Target of modifications 1) AST, 2) Source code 0 1 0 

Fitness function 1) Yes, 2) No 1 1 1 

Objective  1) Single-objective, 2) Multi-objective 1 1 1 

Method of measurement 1) Test case, 2) Formal specification, 3) 
Code review, 4) Hybrid 

1 1 1 

Overall patch quality  1) Minimum, 2) Medium, 3) High 1 1 1 

Test suite T1 T2 T3 

Sub-Criteria Some possible values  

Reliance on test cases 1) Yes, 2) No 1 1 1 

How many of each test case? (#Positive, #Negative); s = small (< 10), m = medium ( 10 <= m <= 
100), l = large (> 100), ‘+’ = more than one 

(+, +) (s, 1) (+, 1) 

Source of test cases 1) Existing, 2) Generation, 3) Human developers 2 1 1 

Co-evolution of test cases 1) Yes, 2) No 2 2 2 

Measuring quality of test cases 1) Coverage, 2) Fault-exposing potential 1 0 0 

Method to select test case 1) RTS, 2) TCP, 3) TSR, 4) IA 0 0 0 

Oracles 1) Existing, 2) Generation 1 1 1 

Evolutionary approach T1 T2 T3 

Sub-Criteria Some possible values  

Type of Evol. approach 1) Genetic programming, 2) Hill climbing, 3) Random 1, 2, 
3 

1 1 

Code bloat 1) Yes, 2) No 1 1 1 

Type of mutation operator 1) Specific, 2) Pre-customized by GP engine, 3) Rewriting rules based on 
grammar, 4) Genetic modification in AST, 5) Genetic modification in patch list, 
6) Genetic modification in assembly 

2 4 6 

Type of crossover operator 1) Crossback, 2) One-point, 3) Variations of unit crossover 0 2 0 

Code selected for mutation 1) A type of fault localization space 1 1 1 

Fix code for mutation 1) Fixloc space, 2) Whole program, 3) A special search operator 3 1 2 

Selection code for crossover 1) Cutoff point in fault localization space 0 1 0 

Tournament selection 1) Yes, 2) No 1 1 1 

Elitism  1) Yes, 2) No 1 0 0 

Language T1 T2 T3 

Sub-Criteria Some possible values  

Target language   1) Language-specific, 2) General languages 1 - Java 1 - C 1 - ASM 

Language generality 1) Yes, 2) No 2 2 2 

Language evaluations  1) Single language, 2) Multiple languages 1 1 2 

Level of code 1) Source, 2) Binary, 3) Intermediate (AST, ELF, ASM) 1 1 3 

Level of modifications 1) Assembly, 2) High-level statements (Atomic, Sub-stmt.) 2 2 1 

Conversion to other form 1) AST, 2) List of edits, 3) List of byte-codes, 4) List of 
assembly instructions, 5) Lisp code 

1 1 0 

Global and local variables, data 
structures, type definitions, and the like 

1) Yes, 2) No 1 2 0 

 

 



TABLE III.  DEFECTS CRITERION AND ITS SUB-CRITERIA 

Defects T1 T2 T3 

Sub-Criteria Some possible values  

Defect class   1) Generic repair, 2) Defect-specific 1 1 1 

Defect type  Deterministic (1: single-threaded, 2: multi-threaded), 3) Concurrent and 
nondeterministic  

1 1, 2 1 

Number of defects 1) Single-fault, 2) Multi-fault 1 1 1 

Locality of defects 1) Local, 2) Whole program 1 1 1 

Priority of defects 1) High-priority, 2) Low-priority 2 1 1 

E – Contemporary defects 1) Legacy, 2) Modern, 3) Common 0 1, 3 1, 3 

TABLE IV.  LEVELS OF APRMM AND DESCRIPTIONS 

Level Description 

Level 1 – Proof of Concept (PoC)   The technique is evaluated against small programs that are either hand-coded or taken from other 
studies or the like. At any rate, they are not real-world programs. Typically a single or limited 
configuration and parameter set are used. 

Level 2 – Confidence or Reliability 
(CoR) 

This level points to the fact that whether a particular technique has been investigated on various 
types of real-world programs with various sizes and defects to study different tradeoffs and 
functionalities. 

Level 3 – Broad Recognition (BR) This level includes investigating different design decisions, configurations, and parameter settings of 
the technique. 

Level 4 – Optimization (OPT) At this level, the exact contexts and circumstances in which the technique best fits are identified. 

Level 5 – Industrial Practice (IP) At this level, the technique is extended and enhanced enough to be scalable, effective, and efficient 
in industrial practice. 

 

Code selected for mutation: A GP-based technique often 
selects the target code for mutation from a limited space to 
overcome space complexity issues and targets more relevant 
code. Particularly, randomly selecting code from the fault 
localization space (statements that identified suspicious and 
further ranked by a fault localization technique) would be a 
reasonable design decision [43]. 

Fix code for mutation: In case where the mutation 
operator tends to insert or replace code, extra code is needed. 
Often this code is selected from the faulty program itself 
considering the intuition that the faulty code contains the seeds 
of its repair as well [26]. The simplest case is to choose the 
code at random from the whole program. A more intelligent 
selection would be to choose the statement from the fix 
localization space [28]: the statement whose variables are in the 
scope of target statements and at least one positive test case 
exercises that statement. 

Selection code for crossover: Crossover is a major 
operator in common GP techniques but is less important for 
GP-based program techniques. Nevertheless, a technique may 
want to choose a cutoff point in fault localization space 
(weighted path) [43]. Many other techniques are possible. 

Tournament selection: A method of selection at each 
generation [36]. 

Elitism: Selecting the fittest individuals to move to the next 
generation and affecting convergence rate [36]. 

Target language: Often program repair techniques are 
designed per each language. GenProg designed for legacy 
software in C [25]. Other techniques were designed for Eifel 
[8] and assembly [37] languages. Since program repair needs 
special treatment for the statements of each language, it seems 
that near future techniques will be language-specific. 

Language generality: A technique that is designed to 
repair programs of one language may have potential to be 
easily adapted for repairing of programs in another language. 
This may occur due to for example close syntactical constructs 
of both languages. In this case, the technique could be called 
multi-language. 

Language evaluations: Typically techniques designed for 
high-level languages are evaluated against a single language 
for which they were designed [22]. However, there exist 
techniques that designed for and evaluated against multiple 
low-level languages such as assembly and ELF binary [37]. 

Level of code: Automatic program repair techniques work 
on different levels of code, representing different tradeoffs in 
design and efficiency. Source code [25], binary code [35], and 
assembly code [37] are some examples. 

Level of modifications: A technique may modify only 
major statements and inner sub-statements remain untouched; 
or else, it may modify a target statement and all of its sub-
statements. 

Conversion to other form: Typically, program repair 
techniques convert original source code to another form for 
modifications. For example, GenProg converts C source code 
to AST. In later versions, it stores the modification on a list of 
edits for efficiency. 

Global and local variables, data structures, type 
definitions: Some of the existing research just work on 
executable statements and do not take global and local variable, 
data structures, or type definitions into consideration. 

Defect class: Techniques that make generic repair are 
preferable since they work for multiple classes of defects 
(defect generality). By contrast, defect-specific techniques 
work on a single class of defects and thus are optimized for that 
class and typically produce sound patches. Most of existing 



techniques are designed for generic repair for which 
specification of desired behavior and evidence to the fault 
should be provided somehow [3, 25]. Moreover, most of the 
defect-specific or correct-by-construction techniques employ 
implicit specifications [27]. A number of the properties among 
several of more formal techniques, especially correct-by-
construction ones, are common with the advances in program 
synthesis such as component-based or test-driven program 
synthesis [27]. 

Defect type: At high-level, defects can divided into 
deterministic and concurrency categories. Most of existing 
techniques repair deterministic defects [25] and are unsound. 
This kind of defects can occur in single-threaded or multi-
threaded programs. By contrast, the number of techniques that 
repair concurrency faults is less than the other category but 
they often produce sound patches. Concurrency faults are 
typically hard to reproduce [27]. 

Number of defects: This indicates the number of faults 
present in the program that can be simultaneously repaired by a 
technique. 

Locality of defects: The root cause of a defect may be 
assumed to be local or spread through the whole program. 

Priority of defects: The defects that are used in evaluating 
a certain techniques should be high priority; i.e. they are 
important enough for human developer to repair and influence 
test suite [29]. 

Contemporary defects: An automatic program repair 
technique may repair defects that are rarely found in current 
software being developed; Or else, it might be designed to deal 
with the defects that are common in modern software 
technologies, languages, and programming paradigms. For 
instance, buffer overflow is a kind of security vulnerability due 
to a semantic fault in legacy C/C++ programs which is not 
checked by the compiler. Modern languages such as C# or Java 
avoid such issues by verifying the index bound of an array. 
Some defects are specific to modern newer languages such as 
class cast exception. Finally, a wide range of (logical) faults are 
common in every language. 

IV. EVALUATION 

Due to strict limitation in space, we summarize the results 
and report a fraction of our evaluations just to serve as a proof-
of-concept. The rightmost three columns of Table I to Table III 
are assigned to concise representation of the results. We report 
the results for three of existing mutation-based techniques and 
label them as T1 to T3 as follows: T1 stands for the technique 
presented by Arcuri [3]; T2 shows GenProg which was 
presented by Le Goues et al. [25]; T3 is related to the technique 
by Schulte et al. [37]. Then, the possible values of each 
criterion are numbered and further used in Ti columns. A zero 
inside a cell means that either the criterion or cases do not 
make sense or there is no evidence to measure the 
corresponding criterion. Investigation of other state-of-the-art 
techniques along with detailed explanation on the results 
remains for future publications. Next, we present a brief 
introduction to each of three techniques. 

The technique proposed by Arcuri [3] uses three 
randomized search algorithms including random search as 
baseline, hill climbing, and GP to evolve faulty programs into 
correct ones. The technique employs new operators based on 
fault localization technique to narrow down the space of 
modifications in the code. This technique works on a large 
subset of Java language. A tool named JAFF implements the 
technique and evaluates it on five faulty versions of seven 
small Java programs with seeded faults. Passing test cases 
indicate the correct behavior and failing test case provide 
evidence to the fault.  

GenProg [25] is a repair technique based on GP that works 
on C source programs. It targets eight classes of faults mostly 
security ones and was evaluated on 16 programs in terms of 
quantitative and qualitative metrics. The programs are 
transformed to AST representation in which specialized 
mutation and crossover operators modify the programs. Fault 
localization and fix localization are used to narrow down the 
corresponding space. GenProg employs failing and passing test 
cases to serve as the evidence to the fault as well as the correct 
behavior. They are also used to measure fitness for evaluating 
candidate patches.  

The technique by Schulte et al. [37] works on arbitrary 
faults on embedded systems where limited resources are 
available. Using GP approach to repair programs, it works on 
assembly and ELF binary code. Besides, random fault 
localization was employed to provide performance and narrow 
the search space. The technique was evaluated on 12 C 
programs and a C++ faulty program. It also uses test cases to 
evaluate candidate fixes. While the techniques by Arcuri and 
Le Goues need instrumentation to collect initial information of 
the code, this technique is free from code instrumentation.  

V. DISCUSSION AND LIMITATIONS 

When comparing two techniques using the mentioned 
criteria, the significance of each criterion should strongly be 
considered. Some properties for an automatic program repair 
are critical and the other may be less important. In other words, 
at least two categories of significance exist among criteria 
namely major and minor. For instance, capability of a 
technique to handle various types of faults and programs and 
thus its expressive power could be more important than timing 
costs. Hence, this importance can introduce weights for criteria. 
In fact, if we want to combine the results of all criteria for a 
technique to measure its overall functionality and performance 
and compare to another technique, this weighting should be 
incorporated somehow. Another concern may arise by the fact 
that some criteria have many degrees and limiting them to 
some discrete cases leads to very coarse-grain measurements. 
The net effect is lack of proper discrimination among 
techniques. For instance, “generic repair” for “defect class” is 
roughly an approximation of reality. The technique might have 
potential only to handle several types of security defects (and 
not all of them) and classified as a generic repair technique 
against a technique that can handle only atomicity violation 
fault and thus is defect-specific. At the same time, another 
technique that can handle various types of defects in web 
application is again considered as generic repair. In fact such 
criteria are by nature very fuzzy and subjective. 



A similar problem occurs for criteria that are influenced by 
several elements and are measured only in Binary manner such 
as “yes” and “no”. For example, “human competitive” criterion 
does well illustrate this situation. It consists of four sub-criteria 
and has two possible cases, “yes” and “no”. If the technique 
does not satisfy a sub-criterion such as full-scalability, we 
classify the technique as non-human competitive. However, it 
may actually be less human competitive compared to the ideal 
case not non-human competitive. 

Finally, we gave some possible cases for each criterion as 
guidelines. We do not claim that the list of values is 
comprehensive and they are by no means complete. The list of 
values per each criterion may be extended accordingly. 

VI. RELATED WORK 

Evaluation Criteria. Programming languages and model 
transformation approaches have been evaluated in many 
studies using different criteria. Readability, writability, and 
reliability are major criteria with various sub-criteria used to 
evaluate PLs [38]. Similarly, bidirectionality, reusability, and 
rule inheritance are common criteria for the assessment of 
MTLs in the context of model-driven software engineering 
(MDSE) [7, 24]. However, most of these criteria are 
qualitatively measured and are too vague for research 
community to agree on. This is why subjective measurements 
are common in these contexts despite the fact that objective 
measurements were also employed to mitigate the subjectivity. 
In this paper, we introduced several criteria for objective 
measurement and evaluation of the automatic program repair 
techniques to direct this young research subfield. 

Automatic Program Repair. Preliminary work on 
program repair involves substantial limitations such as heavy 
constraints on the type of bugs or the need to formal 
specifications. Wotawa and Stumptner made early attempts on 
bug-fixing by considering a single fault model [40]. It 
exhaustively searches the state space of program to find a 
correct one. Using static analysis and pattern matching, 
Deeprasertkul et al. presented a technique [9] to find and repair 
pre-defined bugs. 

Arcuri proposed the use of GP for the task of general 
program repair for the first time [3]. This technique needs only 
positive and negative test cases without any assumption on the 
type of bugs. Furthermore, it does not have any pre-defined 
pattern for patches and the candidate patches are evaluated 
using a fitness function. Inspired by the proposal of Arcuri, 
Weimer et al. started to study the application of GP to 
automatic repair of real-world programs with real faults [25, 
28, 43]. They investigated different representations [30] and 
fitness functions [12] on programs taken systematically from 
real software repositories [29]. Dallmeier et al. introduced 
PACHIKA [8] to generate fixes according to the difference 
between normal and anomalous behavior. These techniques 
and that of Arcuri [3] are dependent upon test cases to validate 
patches and have at least two drawbacks; lack of confidence to 
the results of test case-based evaluation and longer repair time 
due to numerous test case executions. 

Weimer presented an automatic method for patch 
generation [44], which defined formal safety specifications in 

the form of finite state machine. Demsky et al. presented a 
technique [11] for data structure repair [24] based on formal 
specification of consistency for a data structure. Sound 
techniques to repair concurrency bugs were presented by 
Bradbury et al. [6], Jin et al. (AFix) [19], and Liu and Zhang 
(Axis) [31]. Most of such techniques soundly patch atomicity 
violation faults. Defect-specificity of such techniques and 
working based on formal specifications (which are rare in 
practice) are major shortcomings of these techniques.  
ClearView [35] which was proposed by Perkins et al. uses 
runtime monitoring in binary code level to specify failing 
executions and then generates the candidate patches. PAR is 
another recent technique [22], proposed by Kim et al., for patch 
generation of Java programs based on the knowledge gained by 
manual inspection of human-written patches. All of these 
techniques have just evaluated their own techniques in isolation 
by some metrics. However, none of them presented a general 
framework to evaluate and compare automatic program repair 
techniques against each other. This paper concerned itself to 
bridge this gap. 

Automatic Program Repair Evaluation. Monperrus [49] 
and Qi et al. [50] presented some evaluation criteria for the 
assessment of automatic program repair techniques. However, 
they either used a small number of criteria [49] or their criteria 
[50] are limited and specifically targeted towards evaluating 
few of existing techniques. Moreover, they often need to run 
the corresponding tools for which some issues may preclude. 
Even in case of running the tools extensive investigations are 
required to draw conclusions. By contrast, our criteria are 
intended to be general, comprehensive, objective, easy to 
measure, and independent of running tools.  

VII. CONCLUSION 

This paper introduced a family of criteria for the 
assessment of automatic program techniques. Since 2009 a 
number of promising techniques to automatic program repair 
have been presented and this subfield is mature enough to 
evaluate existing techniques to direct future research. To 
formalize this evaluation and make it more systematic, we 
proposed criteria with objective measurement capability. One 
of the criteria is the amount of maturity for which we presented 
a maturity model. We also evaluated three of existing 
techniques using our criteria and compared them against each 
other and gave direction for future work. To our knowledge, 
this is the first report to present comprehensive evaluation 
criteria for automatic program repair context. 
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