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Abstract— In this paper, a new MPC formulation for systems 

with known delayed states and a new iterative algorithm of 

robust model predictive control (RMPC) subject to polytopic-

type parameter uncertainties and input constraints is presented. 

Control of delayed systems with parameter uncertainties is 

usually more complicated in presence of input constraints. MPC 

is an appropriate approach to handle this type of problems. 

Unlike existing MPC techniques, the main advantage of the 

proposed MPC algorithms is that they are simple to construct 

and therefore can be simply implemented in real applications. 

Combined chemotherapy and anti-angiogenic treatment is a 

novel medical approach used for cancer treatment in recent 

years. The paper shows the performance of proposed algorithms 

for tumor volume reduction in combined therapy subject to the 

necessary constraints on drugs dosage. In order to be more 

realistic, we consider model with delays in states that describe the 

process of angiogenesis- the growth of new blood vessels by 

budding from pre-existing vessels - and uncertainty in 

parameters. Finally, the simulation results illustrate the 

performance of the proposed algorithms. 

Keywords; Model predictive control (MPC), Delays,  Polytopic 

uncertainties, cancer combined therapy 

I.  INTRODUCTION 

In practice, many of dynamic systems have time delays. 
Delay phenomena have been recognized in biological systems 
for the first time. Then, they have been found in many 
engineering systems such as communication networks, 
chemical process, mechanical systems and etc. Also, there are 
many factors that can create uncertainties in the dynamic 
model parameters. Such factors are different clinical situations, 
measurement errors and the approximations made because of 
estimation of unavailable state variables. These unavoidable 
uncertainties and delays in systems motivate researchers to 
design a robust controller in order to achieve more realistic 
results. Therefore, in recent years many control researches have 
studied delayed systems with uncertainties [1-3]. Among 
existing control techniques, MPC is an appropriate and popular 
tool for controlling systems with time delays, uncertainties and 
constraints. The robust model predictive control methods have 

been the subject of many researches [8-10]. One of these 
methods utilized in this paper is Max-Min MPC. 

These time delays and uncertainties cause performance 
degradation and instability [4]. In [2], a novel constrained 
RMPC method has been designed for uncertain systems and 
the ability to extend the method for delayed systems has been 
demonstrated. In [5], a MPC algorithm for unknown delayed 
systems with polytopic uncertainties is achieved. They relaxed 
one defined optimization problem on two other optimization 
problems by finding an upper bound on the cost function. One 
of the optimization problems is solvable. Then, they improved 
MPC algorithm by considering relaxation procedures of the 
assumption and stabilizes the closed-loop system. 

Kown and et al. formulated an optimal problem for state 
delayed systems into an optimal problem for delay free 
ordinary systems by utilizing MPC technique. However, this 
method couldn’t guarantee the stability [6]. 

In [3] by utilizing MPC optimization and Lyapunov 
stability theory combined with linear matrix inequalities 
(LMIs) techniques, a novel method was introduced for multiple 
uncertain time-delayed linear uncertain systems and input 
constraint. 

In this paper we propose a new state-space formulation of 
MPC for systems with known and multiple state-delays. This 
method can be applied to a wide class of time-varying delay 
systems. The success of MPC depends on the model accuracy 
while in reality; the modeling process exerts some inherent 
uncertainties to the model. Also this study presents a new 
iterative algorithm for solving the Max-Min optimization 
problem for systems with polytopic parameter uncertainties. 
These methods can be applied for a wide class of time delay 
systems. Compared with other works in the literature, we 
illustrate a simple but reasonably and applicable MPC 
algorithm for multiple time delays and uncertain systems. 

The focus of this research is on cancer combined 
chemotherapy and anti-angiogenic treatment. To design the 
realistic controller, the model parameters are supposed with 
delays and 10 and 20 percent uncertainties. The effect of 
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proposed algorithm is investigated over the determining drugs 
dosages and tumor volume reduction. 

The rest of the paper is organized as follows. Section 2, 
states target systems and assumptions. Describing the 
formulation of MPC for delayed systems and introduces a 
novel iterative algorithm Min-Max MPC in section 3. In 
section 4, simulations illustrate the achieved results and the 
efficiency of theses methods for combined anti-angiogenic and 
chemotherapy. Finally, conclusions are given in section 5. 

II. PROBLEM FORMULATIOM 

Let us consider the following discrete-time system with a 
delayed state and polytopic parameter uncertainties: 

1

( 1) ( ) ( ) ( ) ( )

( ) ( )

m

d
x k A k x k A k x k d

B k u k

 

 

   




  

      , 0     , 0mx l dl   

Subject to constraints on control input: 

 min maxu u k u   

where ( )l  is initial conditions of system and 𝑑𝜏 > 0 (𝜏 = 1, . . 

. , m) denotes the various delays in system, with 

1 2 ... md d d   .  
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Co denotes the convex hull and 

   ( ), ,  , 1:
j j j

A k A B kk j L


   are vertices of the 

convex hull. 
In the following, an objective function is defined 

constituting the difference between the predicted and the 
desired output as well as the control effort. The MPC control 
signal is obtained by the following min–max problem, which is 
considered at each time k: 
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 |
min max

u u k i k u    

Where iiW  and iiQ  are strictly positive definite symmetric 

weighting matrices. PN   denotes the length of the prediction 

horizon. 

In the proceeding sections a method for solving time 
delayed systems with parameter uncertainty is introduced. Our 
case study for proposed method is optimal dosing of drugs for 
cancer combined therapy. 

III. PROPOSED METHOD 

A. Nonlinear Model predective control  

In MPC, we use system model to minimize an objective 
function in order to obtain control signal. The following 
steps, determines the control signal in each iteration: 

1. Discretizing continuous time state space. 

2. Linearizing model around operating point and 
design the MPC controller for the linear system. 

3. Apply control signal to nonlinear system. 

4. At the next sampling time, go to first step. 

 Note that the problem is now in the quadratic form which 
cannot be solved analytically in the presence of constraints on 
the input. So, we used quadratic programming (QP) algorithm 
to find the optimal solution. 

B. New state-space formulation of MPC for delayed systems: 

 
In this section, we introduce new state-space formulation of 

model predictive control for model with multiple delays in 
states. 

Consider the following system: 

          1 , 1 , , ,x k f x k x k x k m u k     

  The system is linearized according to the different delayed 
state as follows: 
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Based on the state-space model the future states are 
predicted for Np (prediction horizon) number of samples as 
follow: 
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2A   and 2B  can be written as follows: 
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pNA  and 
pNB are calculated as following: 
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where ( )C C k  , ( )B B k  and 
1 1

( )A A k . Then, to 

solve steady space MPC problem, we consider the obtained 
equation (10) for output y, in the cost function (4). 

C. Iterative Min-Max MPC algorithm 

The RMPC control problem is generally formulated as the 
Min-Max problem to be able to handle the worst case scenario. 
This is done through solving the following optimization 
problem: 

 min max ,
u U

J u





 

The function to be minimized is actually the maximum 
value of an error norm representing how well the reference 
trajectories are tracked by the output. In the following, a new 
iterative scheme is suggested to design a robust NMPC (Min-
Max MPC) for a class of nonlinear multivariable systems with 
linear parametric uncertainties.   

Remark 1: If a function is convex and is defined over a 
convex set, then its maximum will occur on one of the corner 

points of this space. Since the proposed cost function ( , )J u   

is convex with respect to u and proved to be convex in θ as 
well, then to solve the problem, it only remains to evaluate the 
cost function in the corner points of the uncertainty set. 
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Briefly, the algorithm is defined in the following: 

1. At time k, find ku  by solving the following 

optimization problem with random uncertainty 
*

old
   and set flag =1. 

  min , ,
old old

u U
k

u J u    

2. To be sure the calculated control signal is for the 

maximum value of ( ( ), )J u k   , the corner point 

in which cost function takes its maximum value is 

found and named new . Hence  :         

 arg max u ,  new KJ


 


                            (13)      

 If old new   then finish algorithm. Otherwise 

go to step 1 and set old new  and set 

flag=flag+1. 

3. At the next sample time, set flag =1and repeat 
these steps.   

The iterative Min-Max  MPC algorithm is summarized in a 
Flow chart that is shown in Fig. 1. 

IV. SIMULATIONS AND RESULTS 

In this section, the effectiveness of the proposed MPC 
algorithms is shown for the cancer combined therapy with time 
delay and parameter uncertainties in the model. 

Combined chemotherapy and anti-angiogenic treatment is a 
novel medical approach used to reduce the side effects of 
chemotherapy and increase the effectiveness of the treatment. 

In the model presented by Ledzewicz the effects of 
angiogenesis on tumor size (N) and the vascular carrying 
capacity or endothelial cells volume (K) are chosen as model 
variables and described using a second order dynamic model. 
This model was validated using medical data in Harvard 
University medical school [10]. 

Most biological populations need some time to detect 
changes and adapt to them. So we focus on the developed 
model by d’Onofrio and Gandolfi in [11]   with two discrete 
delays as follows: 

1 1
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N t
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          

 

(14) 

The discrete delays τ1 and τ2 represent the time lags in 
processes of tumor growth and vessels formation, respectively. 
Both delays represent the time lags process of tumor 
angiogenesis. 

Where u and v are the anti-angiogenic inhibitor and 
chemotherapy agent dosage, β is the tumor growth rate, γ and λ 
are angiogenesis stimulation and inhibition parameters 

respectively,   is the normal endothelial cells death rate and η 
and ζ are constants describing the lethality of anti-angiogenic 
and chemotherapy drugs for endothelial cells. 

In this model, the effect of vascular pruning using anti- 

angiogenic agents and the effect of vascular density 
( )

( )

K t

N t

 
 
 

 

on the effectiveness of chemotherapy drugs is described as: 

2

( ) ( )
( )

( ) ( )
( )

1
m

K t N t

N t K t
N t









 
 


 
 
 

  

 

(15) 

 

 

Figure 1.  Iterative Min-Max MPC algorithm 

where, 
( )

( )
( )

K t

N t
 is the constant describing the cytostatic 

killing parameter for cancer cells. The parameter values and 
constraints value used in the simulations which are the same as 
those of [10] are shown in Table 1. The initial conditions used 

in the simulations ( 0N =12000, 0K  =15000). Based on this 

analysis in [11], the maximal values of τ1 and τ2 could not be 

Yes 

No  

Yes    

uk 

No  

kf is the simulation time  
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greater than 0.2685 day and 0.2565 day, respectively. Fig.2 
shows the dynamic of tumor growth and endothelial cells 
volume in the presence of delay without any treatment. 

In all the simulations, the system model is discretized with a 
small sampling time (t=0.001). Period of treatment is fixed to 
15 days. In all cases, the chemotherapy control v is found to be 
in its full dose from the beginning of the treatment period. Also 
in all simulations, we consider constraints on the control signal 
variation rates which result in the prevention of the chattering 
phenomena and rendering the results clinically reasonable. 
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Figure 2.  Behavior the systems  in absence of therapy:tumor volume (N) and 

capacitya(K) the dynamic of system ,(Nd)and(Kd) the dynamic of delayed 
system. 

TABLE I.   PARAMETERS USED IN SIMULATION [10] 

Value Units Symbol 

 

0.192 

day-1    

 
5.85 

day-1    

 
0.00873  

day-1   

 

0.02  

day-1    

 

0.15 

kg mg-1    

 

0.26  

kg mg-1    

 =0.3, m   =2, σ=0.35 
kg mg-1    

 

75 
mg of dose

kg

 
 
 

  
maxu   

 

2 
mg of dose

kg

 
 
 

  
maxv   

 

The nonlinear time-delay system (14) was linearized at 

each sampling time and 1 2, ,A A A  are obtained. Fig.3 

show the application of MPC control method is capable of 
effective reduction of the tumor volume and endothelial cells 
volume whilst observing states delayed in model and the 

constraints on maximally allowable drugs dosage. It is seen 
from Fig.3 that the proposed delay-dependent MPC method 
outperforms the MPC designed on the systems without delays. 
Fig. 4 shows that the control effort for the delayed system is 
less than the system without delays. Biological system models 
are not typically very accurate which makes estimating their 
parameters from gathered data a complex and difficult process. 
Hence, a robust control strategy becomes essential 
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Figure 3.  tumor volume and capacity during combined therapy process 

(N,K) MPC designed without consideration of delay, (Nd, Kd) Proposed 
delay-MPC method. 
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Figure 4.  The optimal controls u (anti-angiogenic agnt)  during cancer combined 

therapy process .(u) MPC designed without consideration of delay, (ud) 

Proposed delay-MPC method. 

.To clarify the robustness of the proposed Iterative Min-

Max algorithm, the model parameters β, , γ, η, ξ, λ, σ,    are 

considered to have 10 and 20 percent uncertainties which are 
added to their nominal values as: 

      1   1   ,   0.1,0.2i i ir r r       

where ir  is any of the above parameter the proposed methods 

are ability to reduce the tumor size even in the presence of 
uncertainties and state delays but as the uncertainties become 
more prominent, the tumor size reduction becomes less 
significant, Figs (5- 7) shows results of robust MPC in 
presence of delays in the system (14) that contain reduction 
tumor value, capacity and antigenic control respectively.
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V. CONCLUSION 

This paper presented a new state space formulation of MPC 
for systems with multiple known delayed states. The 
simulation result illustrate the proposed MPC algorithm is 
superior to the 
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Figure 5.  tumor volume during combined therapy process with nominal plant 

(blue solid line) and uncertain plants with 10% (red dashed line), 20% (violet 
dashed– dot line)  in the presence of delays in model. 
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Figure 6.  The endothelial cells volume, during combined therapy 

processwith nominal plant (blue solid line) and uncertain plants with 10% (red 

dashed line), 20% (violet dashed– dot line) in the presence of delays in model. 

MPC algorithm without considering state-delay. Then new 
iterative algorithm of robust model predictive control (RMPC) 
is presented for systems with polytopic-type parameter 
uncertainties and input constraints. Comparing with a previous 
delay-dependent MPC and Min-Max methods, the main 
advantage of our method is that they are simple to construct 
and therefore can be simply implemented in real applications. 
At the end, benefits of proposed algorithms are illustrated on 
cancer combined chemotherapy and anti-angiogenic treatment. 
To obtain more realistic results, we consider uncertainties for 
model parameters and also in spite of uncertainty and delays, 
we observed tumor reduction. The results of this paper can be 
extended for systems with both state- and input- time varying 
delays. 
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Figure 7.  The optimal controls u (anti-angiogenic agnt)  during cancer 

combined therapy process with nominal plant (blue solid line) and uncertain 

plants with 10% (red dashed line), 20% (violet dashed– dot line)  in the 
presence of delays in model. 
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