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Abstract— In this paper, a Maximum Torque Per Ampere
(MTPA) control approach based on an Extremum Seeking
Control (ESC) algorithm is proposed. First, for the application
of MTPA control, a finite-time gradient algorithm is intro-
duced, analyzed, and then, employed in the gradient-based
ESC algorithm to estimate the MTPA operating point of an
Interior Permanent Magnet Synchronous Motor (IPMSM). A
convergence analysis is carried out in the presence of a new
adaptive Neural Network (NN)-based speed loop controller
in the next step. Finally, simulation results are presented to
investigate the performance of the proposed MTPA control
algorithm.

I. INTRODUCTION

Permanent Magnet Synchronous Motors (PMSMs) are
used in a wide range of servo applications such as electric
vehicles, elevator drives and electric power steering systems.
This is due to their advantages of simple structure, high
power/weight ratio and easy maintenance. Also, PMSMs
have higher efficiency in comparison with induction motors
because of the absence of rotor cooper losses [1]–[4].

Interior PMSMs (IPMSMs) are a special kind of PMSMs
in which the permanent magnets are buried inside the body
of the rotor. As a result, they provide a reluctance torque due
to the difference between the q-axis and d-axis inductances.
However, in order to exploit this reluctance torque efficiently,
more involved control algorithms compared to the conven-
tional vector controls are needed.

Especially in high power and low speed IPMSMs, that
the iron losses are negligible compared to the copper losses,
maximizing the ratio between the electromagnetic torque and
the current amplitude results in a considerable increase in
the efficiency of the drive [5], [6]. To control this ratio,
which is usually known as the Maximum Torque Per Ampere
(MTPA) control, it is required to force the current space
vector to track the MTPA trajectory. Due to several reasons,
the MTPA control is not so straightforward. The main reason
is that the MTPA trajectory is dependent on the uncertain
parameters of the system. That the MTPA trajectory is
implicitly a function of the system states and disturbances,
is the other reason which makes it difficult to analyze the
stability of the designed controller. However, in most cases
the current control loops are designed to be much faster than
the mechanical loops, thus it can be assumed that during a
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sampling time period of current loops the current references,
produced by MTPA trajectory, are constant and their deriva-
tives are equal to zero. To date several solutions have been
proposed for the first problem. In [7], required parameters
are computed in an off-line manner and used to calculate the
MTPA operating point. Because of the parameter variation
during the operating time, such methods suffer from the
lack of robustness. The other solution is to use adaptive
parameters of adaptive control laws [8]. In this method,
however, the convergence of the adaptive parameters to the
true values cannot be guaranteed. Conventional gradient-
based optimization methods are also widely used to deal with
this problem. But the requirement of the uncertain gradient
function is the main drawback of these methods. In [9], [10],
without providing any stability analysis, the gradient function
is estimated based on search algorithms which are not robust
against variations in operating point. The Extremum Seeking
Control (ESC) method is the other online gradient-based
solution which has been used to estimate the MTPA point
[5], [6]. Briefly, a gradient-based online optimization is the
ESC algorithm which estimates the gradient function and
feeds it into a conventional gradient algorithm to estimate
the optimal point [11]. It is worth noting that other forms of
ESC algorithm, in particular Newton-based algorithms, have
also been developed in recent years and successfully applied
in some power engineering applications [12].

The main drawback of the conventional gradient algorithm
is the extreme drop in the convergence speed in the vicinity
of the optimal point. To deal with this problem, inspiring
the concepts of finite-time sliding mode control [13], [14]
and also non-quadratic Lyapunov functions [15], we have
proposed a modified finite-time gradient algorithm with
application to MTPA control in section III. In section IV,
this new algorithm is replaced with the conventional one in
the ESC of the MTPA control scheme, which has a new
structure. A convergence analysis in the presence of the
adaptive Neural Network (NN)-based speed loop controller
is performed and included in the same section. Simulation
results are brought in section V, and finally, a conclusion is
made in section VI.

II. MTPA TRAJECTORY

The instantaneous electromagnetic torque of an IPMSM
in the rotor reference frame is expressed as follows:

Te =
3p

2
(λmiq + (Ld − Lq)idiq) (1)



where Te is the electromagnetic torque, ij and Lj , j = d, q
are the j-axis stator current and the inductance, respectively,
and λm is the maximum flux linkage due to the permanent
magnets. It is clear that the above equation has an infinite
solution set for id and iq with a constant value of Te. These
degree of freedom can be exploited to gain a higher electrical
efficiency. One of the most common optimization problems
that is defined to meet this goal is the problem of minimum
amplitude current subject to a constant torque, which can be
formulated as a constrained optimization problem as follows:{

min I∗2s = i∗2q + i∗2d
s.t. αi∗q − βi∗di∗q = T ∗

e
(2)

where i∗j is the reference for ij , Is is the current amplitude
reference, α = 3p

2 λm and β = − 3p
2 (Ld − Lq).

To solve this constrained optimization problem, according
to the constraint, we have

i∗q =
T ∗
e

α− βi∗d
(3)

Substituting i∗q from (3) into the objective function of (2)
results in an unconstrained optimization problem as follows:

J(i∗d) = I∗2s = i∗2d +
T ∗2
e

(α− βi∗d)
2 (4)

Differentiating the J(i∗d) with respect to i∗d and setting it to
zero, we have:

i∗d(α− βi∗d)3 = −T ∗2
e β (5)

Since it is hard to solve the above forth-degree equation,
we substitute the torque T ∗

e from the constraint of the
problem (2) into (5) to obtain an easier to solve and torque
independent second-degree equation in terms of both i∗d and
i∗q . Thus:

i∗d(α− βi∗d)3 = −(αi∗q − βi∗di∗q)2β
⇒ i∗d(α− βi∗d) = −i∗2q β
⇒ −βi∗2d + αi∗d + βi∗2q = 0

The feasible solution of this equation with respect to i∗d is:

i∗d =
−λm

2(Ld − Lq)
−
√

λ2m

4(Ld − Lq)2
+ i∗2q (6)

Since computing i∗d from the above equation results in the
maximum ratio between I∗s and T ∗

e , it is usually referred to
as the MTPA trajectory. In the remainder of this paper, from
the ’optimal i∗d’ we mean the value of i∗d that satisfied this
equation for a given i∗q .

III. FINITE-TIME GRADIENT ALGORITHM WITH
APPLICATION TO MTPA CONTROL

It is obvious that the exact values of Ld, Lq and λm are
needed to calculate the optimal i∗d from the MTPA equation
(6). These parameters, however, are usually unknown, ex-
tremely uncertain and may vary during the operating time.
Therefore, to use (6), one solution is to use the estimates
rather than the actual values. The online identification of

this system, however, requires complicated identification
methods and also powerful microcontrollers to execute the
identification plans in real-time. In some references, such
as [8], the adaptive parameters obtained from the adaptive
controller are used as the estimates of parameters in (6).
But, this method may result in inaccurate results, because the
convergence of adaptive parameters to accurate values can
only be guaranteed under certain conditions of persistence of
excitation of inputs. Another solution is to directly estimate
the minimum point of (4) by means of the gradient-based op-
timization methods rather than using (6). In this section, we
will propose a modified gradient-based method to estimate
the optimal i∗d. The gradient-based methods are useful for
applications in which the system maintains in the steady-state
for a long enough time. Elevator drives can be investigated
as a potential application for such kind of methods, because
the time period between the two consecutive stops is usually
long enough and, besides, in these drives the energy efficient
approaches are vital and highly required. Another potential
application are home appliances such as washing machines.

The conventional gradient algorithm for this specific prob-
lem can be expressed as follows:

i̇∗q = γg∇J(i∗d), ∇J(i∗d) =
∂J

∂i∗q
(7)

where γg is a positive parameter known as step size. The
main drawback of the conventional gradient-based opti-
mization as above equation is considerable drop in the
convergence speed near the extremum point. Increasing the
step size near this point, a common solution to overcome
this problem that is, however, sometimes accompanied by
instability problems. In one-dimensional gradient algorithms,
the original gradient function at right hand side of (7) can
be replaced with any other function which has the same
sign as it. Exploiting this fact, to avoid the extreme drop
in the converges speed, we modify the conventional gradient
algorithm (7) as follows:

i̇∗d = −γg
(
∂J

∂i∗d

)κ
(8)

where κ ∈ (0, 1], and for the scalars z and η we have the
following definition:

zη =

{
|z|ηsgn(z); 0 < η ≤ 1
|z|η ; 1 < η ≤ 2

Therefore, since the term
(
∂J
∂i∗d

)κ
is an odd function of the

gradient ∂J
∂i∗q

, the expressed condition for one-dimensional
gradient is met. The modified gradient algorithm provides
us with not only a faster but also a finite convergence time.
The finite-time convergence property of this algorithm is
presented as the following theorem:

Theorem 1: The gradient algorithm (8 ) with the objective
function (4) converges to the minimum point in finite time
if its initial condition i∗d(0) is close enough to the this point.



Proof: According to (4), we have:

∂J

∂i∗q
= 2

(
i∗d +

βT 2
e

(α− βi∗d)
3

)
(9)

Let define the error state ed as:

ed = i∗d +
βT 2

e

(α− βi∗d)
3

Thus, the value of i∗d for which ed(i
∗
d) = 0 is the optimal

solution of (4). Therefore, to prove the theorem it is enough
to show that ed(t) converges to zero in finite time.

The time derivative of ed along (8) is:

ėd = −γ̄g

(
1 +

3T 2
e β

2

(α− βi∗d)
4

)
eκd (10)

where γ̄g = 2γg . It is obvious that in the feasible oper-
ating region h(i∗d) =

3T 2
e β

2

(α−βi∗d)
4 > 0. Now, considering the

Lyapunov function V = 0.5e2d, its time derivative is:

V̇ = −γ̄g

(
1 +

3T 2
e β

2

(α− βi∗d)
4

)
e1+κd < 0

Therefore, ed, at least, exponentially converges to the origin,
and it can be concluded that if the initial condition of i∗d(t) is
close enough to the optimal point then h(i∗d) has a bounded
value. According to (10) and without loss of generality for
the initial condition ed(0) > 0, we have:

ed(0)∫
0

ded
eκd

= γ̄g

ts +

ts∫
0

h(i∗d)dt

 (11)

where ed(ts) = 0. Now, we define f(ts) as follows:

f(ts) = ts +

ts∫
0

h(i∗d)dt

Since during the operating time h(i∗d) > 0, it can be shown

∂f

∂ts
= 1 + h(i∗d) ≥ f̄ > 0

Also, due to the roundedness of h, it can be easily concluded
that f(0) = 0. To continue, first we state implicit function
theorem [16]:

Lemma 1: Assume that h(x, u) is continuously differen-
tiable ∀(x, u) ∈ Rn × R → R, and there exists a positive
constant r̄ such that ∂h∂u > r̄ > 0. Then there exists a smooth
and continuous function u = u∗(x) for which h(x, u∗) = 0.

According the to the lemma (1), it can be shown that for
the positive constant c, the following equation:

ts +

ts∫
0

h(i∗d)dt = c

will be met for a bounded ts > 0, and according to (11),

c =
1

γ̄g

ed(0)∫
0

ded
eκd

=
|ed(0)|1−κ

γ̄g (1− α)

As it can be seen from (9), the main problem for imple-
mentation of the both finite-time and conventional gradient
methods is that the gradient function is dependent on the
unknown parameters of the system. In fact, by using the
gradient-based optimization algorithm rather than the MTPA
equation, the problem of the estimation of three parameters is
reduced to a problem of one unknown parameter which is the
gradient function (9). One of the most common approaches
to deal with such problems is the ESC. In many of control
applications the mapping from the reference to the system
output has an extremum point, and the control objective is to
regulate the system output close to this point. For example,
consider the following system:

ẋ = f(x, u), y = g(x)

and assume that there is a x∗ for which y∗ = g(x∗) is an
extremum for g(.). In many cases because of the system
uncertainties neither x∗ nor g(.) are exactly known. The main
goal of ESC is to estimate x∗ and to force the closed-loop
system output to converge to it [17], and works based on
the gradient algorithm. Briefly and simply, first the gradient
function is estimated and then it is used in the gradient
algorithm to estimate x∗ in a closed-loop system.

IV. FINITE-TIME GRADIENT-BASED ESC ALGORITHM

ESC is a very old method and its emergence dates as far
back as the early 1920s [17], and gained a high interest since
the year 2000 when the first comprehensive convergence
analysis was presented by Krstic and Wang [11]. This method
has also been used in IPMSM drives to estimate the optimal
i∗d, and to the best of our knowledge, until now, in all works
the ESC algorithm was accompanied by PI controllers in the
both current and speed control loops, and mostly the speed
controller generates the current magnitude reference I∗s [5],
[6], [18]. In this section, we investigate the performance of
the ESC algorithm based on the modified gradient algorithm
in the presence of a new adaptive NN-based speed loop
controller which generate i∗q rather than I∗s . The block
diagram of the proposed modified gradient algorithm-based
ESC for the IPMSM drive is shown in Fig. 1. In this figure,
a > 0 and ωd are the amplitude and the frequency of the
injected excitation signal ∆i∗d, respectively, ωl and ωh are the
band passes of the low pass and high pass filters, respectively,
the block MTPA calculates the nominal value of optimal i∗d
according to (6), fts is a signal which determines whether the
system is in the transient or steady-state operation. According
to this block diagram, during the transient operation, when
fts = 0, the output of the MTPA block which calculates
i∗d from the nominal MTPA equation (6) is used. Although
the obtain i∗d < 0 by MTPA block is not optimal, injecting
a negative id during transient operation for increasing the
margins of saturation voltages is inevitable. On the contrary,
when fts switches from zero to 1, which shows that the
system has nearly entered the steady-state operation, the ESC
algorithm starts working and estimating the error between
the optimal i∗d and the output of the MTPA block. Then, this



Fig. 2. Simplified model of the closed-loop system.

error is added to the output of MTPA block. To know about
the mechanism of generating fts, you can refer to [19].

Remark 1: When the ESC starts working, the initial value
of the integrator is set to zero.

A. Convergence analysis of the proposed ESC structure

In this section we investigate the convergence of the
proposed ESC structure in presence of adaptive NN-based
speed loop controller. Considering that current control loops
are significantly faster than the speed control loop and ESC
dynamics, from the speed dynamic point of view, it can be
assumed that iq = i∗q , id = i∗d. Therefore, the closed-loop
system can be simplified as the block diagram shown in Fig.
2. In this figure, J is the moment of inertia, B is the viscous
friction coefficient, ωr is the mechanical speed of the motor,
ω∗
r is the reference for ωr, Tl is load torque, the block called

”MTPA tracker” represents the proposed block diagram in
Fig. 1, and the adaptive NN-based control law is as follows:

i∗q = Ŵ
T

S(ωr)− k1er (12)

where ωr is the rotor speed, k1 is a positive control
parameter, Ŵ = [ŵ1, . . . , ŵn]

T is an estimate of the
RBF NN ideal weight vector W ∗, S = [s1, . . . , sn]

T

is a vector of Gaussian RBFs with the following form
si(ωr) = exp(−(ωr − µi)T (ωr − µi)/η2) with µi =
[µi1, . . . , µir]

T
, i = 1, ..., n is the center of the receptive

field, µ = [µT1 , ..., µ
T
n ] and η is the width of the Gaussian

function, and er = ωr − xm where xm ∈ R is the state of
the following first-order reference system:

ẋm = −amxm + amω
∗
r (t) (13)

where ω∗
r is the reference speed. The positive constant am

describes the desirable speed response of the closed-loop
dynamic. The σ-modified robust adaptive law for Ŵ is given
by [16]

˙̂
W = ˙̃W = Γa

(
−S(ωr)er − σŴ

)
(14)

where W̃ = Ŵ−W ∗, Γa = ΓTa > 0 is the adaptive gain and
the small value σ > 0 is used to guarantee the robustness of
the adaptive law.

Due to the nonlinear controller and also the nonlin-
ear torque equation, the overall speed control loop has a
nonlinear dynamic which makes the convergence analysis
difficult. Therefore, to have an easier analysis we use small-
signal linearization of the control loop around its steady-
state operating point. A small-signal linear approximation
is really fairly reasonable, because the amplitude of ∆i∗d is
taken to be sufficiently small. For a fixed value of i∗d, which
is generated by MTPA tracker, the set P ∗ denotes the steady-
state operating point as follows:

P ∗ =
{
ωr = e∗r + ω∗

r , id,q = i∗d,q, Te = T ∗
e (i∗d,q), Ŵ = Ŵ ∗

}
where e∗r is a small tracking error due to the σ-modification.
Linearizing the speed dynamic around P ∗ gives [5]:

J
d

dt
∆ωr = −B∆ωr + ∆Te

Where:

∆Te =
∂Te
∂iq

∣∣∣∣∗∆i∗q +
∂Te
∂id

∣∣∣∣∗∆i∗d (15)

Therefore, in the frequency domain we have:

∆ωr = P (s)∆Te, P =
1

Jms+Bm
(16)

And according to (12), the linearized model of the control
input is:

∆i∗q = −Dn∆ωr + Cn∆Ŵ (17)

where:

Dn =
∂i∗q
∂ωr

∣∣∣∣∗ = k1−Ŵ ∗T ∂S

∂ωr

∣∣∣∣∗, Cn =
∂i∗q

∂Ŵ

∣∣∣∣∗ = S∗T

Also the linearized dynamics of the adaptive law is (∆er =
∆ωr):

∆
˙̂
W = An∆Ŵ −Bn∆ωr (18)

where:

An = −Γaσ, Bn = Γa

(
∂S

∂ωr

∣∣∣∣∗e∗r + S∗
)

Since e∗r has a small value, it can be assumed that all the
entries of matrix Bn are positive. According to (18,17), for
∆i∗q in the frequency domain we have:

∆i∗q = −C(s)∆ωr (19)

where

C = Cn(sI −An)
−1
Bn +Dn = Dn

s+ σγa + S∗TBn

Dn

s+ σγa

Therefore, according to the linearized models (15,16 and 19),
the small-signal block diagram of Fig. 3 can be drawn.

Considering this block diagram, we have:

∆i∗q = ktG(s)∆i∗d (20)

where

G(s) =
bP (s)C(s)

1 + bP (s)C(s)
, b =

∂Te
∂iq

∣∣∣∣∗



i∗2d + i∗2q
s

s+ωh
× ωl

s+ωl
−γg

(
2u
a2

)κ 1
s

i∗d = u1, fts = 0
;u1 + u2, fts = 1

MTPA
u1

J w z u y u2

∆i∗d = a sin (ωdt)

+

fts

i∗q

i∗d

Fig. 1. Block diagram of the proposed MTPA control scheme.

∂Te

∂id

∣∣∣∗ P (s) C(s)

∂Te

∂iq

∣∣∣∗

∆i∗d + ∆Te ∆ωr ∆i∗q

−

Fig. 3. Small-signal model of the simplified closed-loop system in Fig. 2

and kt =
∂iq
∂id

∣∣∣∗. Since the speed control loop is stable [19],
it can be concluded that the transfer function G(s) is also
stable. According to Fig. 1, Since ∆i∗d is a sinusoidal signal
and the closed-loop system is stable, it can be shown that in
the steady-state:

∆i∗q = ktksa sin(ωd + ϕs) (21)

where ks = |G(jωd)| and ϕs = ∠G(jωd). Considering the
objective function as J from (2), one can write:

∆J =
∂J

∂i∗d
∆i∗d +

∂J

∂i∗q
∆i∗q = 2i∗d∆i

∗
d + 2i∗q∆i

∗
q

= 2ai∗d sin(ωdt) + 2aktk2i
∗
q sin(ωdt+ ϕs) (22)

The signal ∆J from (22) is, in fact, the output of the high
pass filter [11]. Therefore, according to the block diagram of
Fig. 1, during the steady-state operation we have w ' ∆J .
As a resul:

z = wa sin(ωdt) = a2i∗d sin (ωdt)
2

+ 2a2ktk2i
∗
q sin(ωdt+ ϕs) sin(ωdt)

= a2(i∗d + ktks cosϕsi
∗
q)− a2ktksi∗q cos(2ωdt+ ϕs)

− a2i∗d cos 2ωdt (23)

As can be seen, the above equation has a dc part and an ac
part with a frequency of 2ωd. Thus, if the band pass of the
law pass filter ωl is low enough, then in the steady-state we
will have:

u ' a2(i∗d + ktks cosϕsi
∗
q) (24)

Therefore, setting u = 0, the following equation is achieved:

i∗d + ktks cosϕsi
∗
q = 0 (25)

Besides, if we would assume that the system is static, then
the objective of ESC was to estimate the extremum point

of the static function T ∗
e = T (i∗d, i

∗
q) and it could be easily

shown that setting u = 0 would result in:

i∗d + ktsi
∗
q = 0 (26)

In fact the above equation gives the optimal value of i∗d for
a given i∗q , because it is proved that in the case of static
functions, the ESC algorithm converges to the extremum
point [11], therefore the equation will hold in the steady-
state. On the other hand, the closed loop dynamical system of
Fig. 2 cannot be guaranteed to meet ks cosϕ = 1. Therefore,
considering that (26) gives the optimal solution, holding (25)
means that the proposed ESC does not completely converge
to the optimal point. Since (20) is a proper and stable
transfer function, for a big value ωd it can be concluded that
ks ' 0. Therefore, according to (25) it can be concluded that
implementing the proposed ESC scheme with a very high ωd
cause i∗d to converge to zero. On the other hand, since the
transfer function (20) has no zeros or poles at the origin, for
small values of ωd it can be easily shown that ϕ ' 0. Thus,
in low frequencies, that ks cosϕ ' 1, the equation (25) is
almost equivalent to (26), and the ESC algorithm converges
to a small neighborhood of the optimal point.

V. SIMULATION RESULTS

To investigate the performance of the proposed MTPA
control method, some simulations are performed in MAT-
LAB/Simulink. The nominal parameters of the IPMSM are:
Rs = 1.9Ω, Lq = 31mH , Ld = 15.2mH , λm = 0.227 V.srad ,
J = 0.0005kg.m2, B = 0.005N.m.srad . Also, the parameters
of the speed controller and MTPA control are: am = 30,
µ = [−30 : 10 : 200], k1 = 2,Γa = 20I26×26, σ = 0.002,
η = 10, a = 0.025 and γg = 0.37. The proposed PI
and adaptive control method in [19] is employed in current
control loops. To model uncertainties, the actual Ld, Lq and
λm are selected as 80%, 50% and 70% of their nominal
values, respectively.

First, we study the performance of the MTPA control
scheme with conventional gradient algorithm (κ = 1) for
different values of ωd. As shown in Fig. 5, for small values
of ωd the MTPA control converges to the optimal i∗d with a
small tracking error. As was expected, for very big ωd, the
algorithm converges to zero. It is clear that the ESC with
κ = 1 is extremely slow. The performance of the finite-time
gradient based-ESC for κ = 0.6 is shown in Fig. 4. While the
steady-state responses of the both conventional and proposed
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κ = 0.6

algorithms are almost the same, the convergence speed
is significantly improved by using the modified gradient
algorithm.

VI. CONCLUSION

First, for the application of the MTPA control, a finite-time
gradient algorithm was proposed, analyzed and, then, utilized
in the gradient-based ESC algorithm to estimate the MTPA
operating point of an IPMSM. A convergence analysis was
also performed in the presence of a new adaptive NN-based
speed loop controller. Simulation results were presented
to study the performance of the proposed MTPA control
algorithm. The results show the faster convergence of the
proposed MTPA control than the conventional approaches.
It was also verified that this method does not provide a
complete convergence to the optimal point, and there is
always a bounded tracking error which can be reduced by
lowering the frequency of the injected excitation signal.
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