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Abstract—This paper proposes a modification in the dynamical 

SVEIR model of infectious diseases. The basic SVEIR model, 

considers vaccination as the only control method for the disease; 

while in this work, we have proposed treatment as another means 

of control, along with vaccination. As a result, a model that uses 

both vaccination and treatment as the control inputs of the model 

is derived. After discussing the stability of the model, an optimal 

control method has been applied to the system, in order to derive 

an optimal combination of vaccines and treatment, for curing the 

influenza disease. It is obvious that the treatment charges are 

higher than the vaccination costs. As a result, a higher weight has 

been dedicated to treatment ratio and the infected population, in 

the objective function of the optimization problem. The 

simulation results, show more efficiency in optimal control of the 

new SVEIR model, compared to the classic SVEIR model, 

controlled with a PID controller, or an epidemic disease, 

controlled just with a constant vaccination ratio and without any 

treatments.   

Keywords-optimal contro, SVEIR model, treatment, 

vaccination, epidemic diseases.  

I.  INTRODUCTION  

Infectious diseases are of the oldest enemies of human 
health. Some epidemic diseases, like plague and influenza in 
the past century, have inflicted heavy damages on human 
society. However, with the development of economic and 
cultural status, the infectious diseases have become under 
control and in some cases, such as small pox, they have been 
eradicated. But, still in many undeveloped countries the 
infectious diseases are the majority of common diseases.  

One of the most important infectious diseases, which could 
have not been eradicated completely until now is influenza. 
Statistics show that influenza pandemics have periodically 
affected humanity since ancient times; they are rare but 
recurring events. Influenza spreads around the world in a 
yearly outbreak, resulting in about three to five million cases of 
severe illness and about 250 to 500 thousand deaths.  

In the Northern and Southern parts of the world, outbreaks 
occur mainly in winter while in areas around the equator, 
outbreaks may occur at any time of the year. Death occurs 

mostly in the young, the old and those with other health 
problems. Larger outbreaks known as pandemics are less 
frequent. In the 20th century three influenza pandemics 
occurred: Spanish influenza in 1918, Asian influenza in 1958, 
and Hong Kong influenza in 1968; each resulting in more than 
a million deaths. The World Health Organization, WHO, 
declared an outbreak of a new type of influenza A/H1N1 to be 
a pandemic in June 2009 [1]. There are three types of flu 
viruses, namely, A, B, and C. Among these influenza types, the 
type A viruses is more severe than others for human 
populations. Most influenza outbreaks and epidemics, 
including all pandemics of the last century, have been caused 
by the influenza A type viruses of a specific HA and NA 
subtypes. It has been the cause of excessive morbidity and 
mortality.  

Because of the high risks of illness and high numbers of 
death, associated with influenza, much attention has been 
focused on understanding the influenza disease dynamics, and 
different dynamical models have been derived, in order to 
model this epidemic disease [2], [3]. Each model can be used 
as a tool to obtain a specific purpose. For example, the 
mathematical model uses mathematical language to describe 
the system. Therefore, mathematical modeling has become an 
important and powerful tool in understanding the dynamics of 
disease transmission.  

The mathematical models come in many forms, from 
simple models to very complex ones; but all of the models 
must comply with the three important principles, namely, 
accuracy, understandability and flexibility. The mathematical 
models that describe the infectious diseases can be modeled in 
the form of ordinary differential equations (ODEs), partial 

differential equations (PDEs), or sometimes both [4]. The 
simplest model, in infectious diseases, which was first 
introduced in [5] is the SIR model, that includes three state 
variables; namely, susceptible, infected and recovered [6]–[9]. 
After the development of this model, a lot of mathematical 
models have been presented for different infectious diseases, 
for example the SEIR model, which includes an extra state, 
representing the exposed population [10]–[13]. One of the most 
common methods, to control the infectious diseases is 
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vaccination, which has been modeled either as a function or as 
a separate state in the literature.  

A good example of dynamic models of epidemic diseases, 
that has considered the vaccinated population in the form of a 
separate state is the SVEIR dynamical model [14]–[16]. Some 
authors, have modeled vaccination as pulse function in their 
papers [17], [18]. But the vaccination is not the only way for 
controlling infectious diseases and sometimes it is not an 
efficient way either. For instance, to prevent the spread of the 
severe acute respiratory syndrome (SARS) during 2003-2004, 
scientists used quarantine method and quarantined and isolated 
those infected with SARS[19]. The mathematical model, 
SEQIHRS, which contains the additional states of quarantined 
and hospitalized, is another model for infectious diseases 
which uses quarantine as a control measure in its equations 
[20]. The other mathematical tool that can be used to control 
the spread of infectious diseases is optimal control theory. 
Optimal control has a long history in biomedicine, particularly, 
in models for cancer chemotherapy [21]. It is often used for 
cases in which, either vaccine or treatment is available. For 
example, Gaff and Schaefer [22] applied the optimal control 
theory to find the most effective control strategy to minimize 
the number of individuals who become infected. Zaman et al. 
[23] did a related work, but concentrated on an SIR model 
using only vaccination as their control strategy. 

In this paper, first the SVEIR dynamic model of infectious 
diseases has been modified, adding a treatment ratio to the 
equations, in order to consider treatment of infected 
individuals, as another control input along with vaccination. 
The stability of the model has also been discussed. Then, an 
optimal control strategy has been applied to this new dynamic 
model and it has been shown that the proposed optimization on 
this model, provides better results compared to other control 
strategies, with vaccination as the only control input at hand. 

The paper is organized in the following format. In section 
II, the SVEIR dynamical model and its normalized version are 
introduced thoroughly. In section III, the stability of this model 
is presented and discussed. Section IV, first modifies the 
SVEIR model, to include treatment as another important 
control input, and then presents the proposed optimal control 
strategy, while in section V, the simulation results are 
presented. Section VI, concludes the paper.  

II. MODEL FORMULATION 

In this work, the SVEIR model introduced in [3] will be 
used as the dynamical model of the infectious diseases. In this 
model, the total population is divided into five subgroups: 
susceptible, S, vaccinated, V, exposed, E, infective, I, and 
recovered, R. The total population size is denoted by N= 
S+V+E+I+R. The SVEIR dynamical model is presented by the 
following equations: 

           (1)  

                    (2) 

        (3) 

                                                        (4) 

                                                      (5) 

 

The biological definition of the parameters of the model in 
(1)-(5), are specified in Table 1. 

TABLE I.  MODEL PARAMETERS 

Parameter Description  

 Contact rate 

 Ability to cause infection by exposed individuals 

 Ability to cause infection by infectious 
individuals 

𝐕 Factor by which the vaccine reduces infection 

 Mean duration of latency 

 Mean recovery time for clinically ill 

 Duration of immunity loss 

 Natural mortality rate 

𝑟 Birth rate 

 Recovery rate of latents 

 Flu induced mortality rate 

𝜃 Duration of vaccine-induced immunity loss 

φ Rate of vaccination 

𝜐 Rate of treatment 

 

Fig.1, depicts a transfer diagram of this model, which shows 

the relations between these epidemic classes graphically. 

 

 
Figure 1.  The flow diagram of the SVEIR model [3]. 

In order to analyze the SVEIR model, here we have used 
the normalized form of this model, which is signified the 
fraction of the classes S, V, E, I and R.  Here we have placed 
s=S/N, v=V/N, e=E/N, i=I/N and r=R/N instead of SVEIR, 
respectively. Thus, the SVEIR model presented in (1)-(5) will 
be rewritten in the following normalized form [3]: 

  (6) 

        (7)  



              (8) 

            (9) 

          (10) 

                                               (11) 

III. STABILITY ANALYSIS 

In order to derive the equilibrium points of the system 
formulated in (6)-(11), the following equation should be 
solved: 

 

                 
For deriving the disease free equilibrium, we should 

assume I, E, and R to be equal to zero. This results in the 
number of susceptible and vaccinated populations, in the 
absence of diseases, to be calculated as: 

  

  

Now, with regards to the aforementioned fact that: 
, and with the use of (13), and (14), the 

disease free equilibrium of the model will be: 

        (15) 

Another equilibrium of the system is the endemic 
equilibrium point, an equilibrium in which the infected, 
exposed and recovered populations are not assumed to be zero, 
in other words, the equilibrium at the presence of the disease. 
This equilibrium, EQen=(S*,V*,E*,I*,R*) , has been explained in 
[3]. 

With the use of the generation approach presented in [3], 
the next generation matrix FW is derived. In this formulation, F 
and W are defined as follows: 

  

Therefore, the dominant eigenvalue of FW, called the basic 
reproduction number, R0, is calculated as: 

  

In [3], it has been shown that the basic reproduction 
number modified by vaccination is: 

  

Substituting Sdf and Vdf from (15), into (18), the 
reproduction number Rvac will be derived as follows: 

          (19) 

 It has been proved in [3], that the disease free equilibrium 
point of the SVEIR model in (7)-(10), would be stable for 
Rvac<1. Reference one, has also investigated the stability of the 
endemic equilibrium point, thoroughly. 

IV. OPTIMAL CONTROL FORMULATION 

Although vaccination is one of the methods for controlling 
infectious diseases, a control strategy cannot be effective with 
the mere use of vaccination. Moreover, vaccination forces a lot 
of costs on health centers. As a result, in this work, the two 
strategies of vaccination and treatment have been used 
simultaneously in order to reduce the number of infected 
population. Furthermore, in order to optimize the costs we have 
used an optimal control method.   

To reach this goal we add the rate of treatment, 𝜐, to the 
equations (9) and (10), which explain the dynamical behavior 
of the infected and recovered populations, respectively. 
Therefore, equations (9) and (10) are modified, and rewritten, 
as follows: 

                                 (20) 

                              (21) 

The treatment expenses are much greater than the 
vaccination costs, as a result, the main purpose is to reduce the 
treatment costs. Thus, we define the purpose of the optimal 
control strategy, performed in this work, to reduce the 
treatment expenses, and number of the infected individuals; we 
also try to reduce the vaccination costs, as much as possible. In 
order to reduce the infected population, I, more individuals 
have to be vaccinated. This causes the majority of the 
vaccinated population to become immune against the disease, 
as a result, the disease becomes controlled and does not prevail. 

The objective function of our optimal control strategy, is 
defined in the following general form: 

                       (22) 

where, u1 and u2 are the two control inputs of the system, 
representing the rate of vaccination and rate of treatment, 
respectively. Moreover, the constants A1, A2 , a, and b should 
be defined with regards to the fact that, reduction of the 
treatment charges, is much more important than lowering the 
vaccination costs, although reducing the vaccination costs is 
also our second priority.  

The optimization strategy used in this work, was 
implemented, with the use of the "fmincon" function with 
"active-set" algorithm in MATLAB. 

V. SIMULATION  SOLUTUONS 

In this section, we are going to control Influenza SVEIR 
model with the use of optimal control. Here we use the 



objective function, introduced in (22), with the following 
constant parameters: 

                                       (23) 

It is obvious from (23), that a greater weight, A2 has been 
considered for the number of infected individuals, compared to 
other values, also the constant b  has been given a value, much 
greater than A1, and that is because in our optimal control 
design, the most important priority, is to reduce the number of 
infected individuals, also it is very important to reduce the 
treatment charges. It is after these two that comes the 
vaccination costs, which have a lower weight in the objective 
function. 

Also, the initial conditions are assumed to be as follows, 
and the parameter values used for this simulation, are shown in 
table. II. 

 

TABLE II.  PARAMETER VALUES 

parameter value 

 0.514 

 0.25 

 1.00 

𝐕 0.9 

 2 days 

 5 days 

 365 days 

 5.5*10-8 

𝑟 7.14*10-5 

 1.857*10-4 

 9.3*10-6 

𝜃 365 days 

φ Variable 

𝜐 Variable 

 

Fig.2, shows the dynamical behavior of the Influenza 
disease, controlled with the optimal control strategy, while 
Fig.3, and Fig.4, show the behavior of the system, without any 
control strategies and with a PID controller, respectively. In 
order to have a better comparison between these three 
dynamical behaviors, the dynamics of each population has 
been drawn separately, for all of the three simulations, in Fig.5- 
Fig.9. 

Fig.5, shows that the population of the susceptible 
individuals, in the case of the modified model with optimal 
control strategy, changes better, compared to its behavior in the 
case of PID control. Moreover, the susceptible population with 
optimal control, is larger compared to the case with no control, 
which seems to be logical, because, in the case of optimal 
control, less people get infected or exposed to disease, which 

causes a greater proportion of the population to remain 
susceptible and not infected. 

 
Figure 2.  SVEIR model with optimal control 

 

Figure 3.  SVEIR model witout any control 

 



Figure 4.  SVEIR model with PID control 

It can be seen from Fig.6, that the vaccinated population, 
reduces dramatically, in the presence of optimal control 
strategy. This is due to the fact that, with smaller infected 
population, smaller proportions of the total population need to 
be vaccinated. This in turn, will result in lower vaccination 
costs. 

Also, it can be seen from Fig.7, and Fig.8, that with optimal 
control strategy, the infected and exposed populations, have 
smaller amounts, which is strong representation of the efficacy 
of the optimal control on the proposed modified SVEIR model.   

 

Figure 5.  The population of Susceptible 

Finally, Fig.9, shows that the recovered population, 
changes in a better fashion, with the proposed method, 
compared to the case of PID. Moreover, it has a lower value, 
compared to the recovered population, in the case with no 
control strategy; this is due to the fact that, when using optimal 
control strategies, the populations of the infected and exposed 
have reduced, and it is obvious that for smaller infected or 
exposed numbers of individuals, we will also have a smaller 
recovered population. In other words, there are fewer infected 
people in the need of being recovered, in the first place. 

 

Figure 6.  The population of Vaccinated 

 

Figure 7.  The population of Exposed 

 

Figure 8.  The population of Infected 

 



Figure 9.  The population of Recovered 

VI. CONCLUSION 

In this paper, the SVEIR model of dynamic diseases has 
been considered. First, the dynamics of this system has been 
modified by adding the treatment ratio to the dynamical 
equations of the recovered and the infected populations, this 
enables to transport those of the infectious population who 
have been cured to the recovered population. After this 
modification, which makes the dynamical model of the disease, 
more realistic and applicable to real epidemic cases, the 
optimization problem of this new SVEIR dynamical model of 
infectious diseases, has been investigated. Then, an objective 
function has been defined to optimize the system. It is obvious 
that the treatment costs are much greater than the vaccination 
costs; making us want to reduce the treatment costs by 
dedicating a greater weight to the treatment in the objective 
function of the optimization problem. The simulation results, 
performed on the SVEIR model of influenza disease, show the 
efficacy of this method. The modified version of the SVEIR 
model, performs better compared to the model, which had 
vaccination, as its only control means, for overcoming the 
disease. 
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