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Abstract—In this paper, we propose a method for distributed 
compressed video sensing (DCVS) based on dictionary learning. 
The proposed method divides the video sequences into group of 
pictures (GOP). Each GOP includes a key-frame following by a 
CS-frame. Compressed sensing (CS) is used to exploit spatial 
redundancy of frames. At encoder side Key-frames are sampled 
using random projection methods. To acquire much sparser 
version of CS-frames, basis extracted from CS-frame itself is used 
as a sparsifying basis. Sampling rate for key-frames and CS-
frames are respectively adjusted to 0.5 and 0.25. At decoder side 
each frame reconstruction formulated as an �� − minimization 
problem. For each CS-frame, motion compensation interpolation 
method is applied on previous reconstructed key-frames to 
generate side information (SI). A dictionary is learned from SI and 
is used as a basis function in order to compensate low sample rate 
of CS-frames based of recursive least square dictionary learning 
algorithm (RLS-DLA). The results comparison with iterative least 
square dictionary learning algorithm (ILS-DLA) and K-SVD 
algorithm shows that the proposed method performs better than 
dictionaries learned by other methods.        
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I. INTRODUCTION 

Conventional video coding approaches are based on high-
complexity techniques [1]. In these approaches, video signal is 
sensed and then compressed. Performing sensing and 
compressing disjointedly, will cause raw pixel data in the 
sensing stage that will be ignored in compressing stage.   
Acquiring data that will be discarded in latest stage, wastes most 
valuable allocated resources especially in resource limited 
applications. With the emersion of compressed sensing (CS) [2], 
and introducing the idea of single pixel camera [3], sensing and 
compressing steps have been merged into one step which 
samples and compresses a sparse video signal at a sub-Nyquist 
rate. It also promise that under certain conditions, the sensed 
video data will be reconstructed with fair quality.   

Recently, the idea of CS has been spread to conventional 
distributed video coding. In distributed compressed video 
sensing (DCVS), the compressed video data for each frame 
taken directly via random projecting the raw data to linear, non-
adaptive measurements. Reconstruction has done using solving 

the ��  –minimization problem extracted from sensed 
measurements incorporate with utilizing inter-frame correlation 
[4]. In order to exploit the inter-frame correlation, video frames 
are classified to “key-frames” and “CS-frames”. Each “key-
frame” has compressed and reconstructed independently from 
other frames, whereas each “CS-frame” will be sampled in low-
rate compared with “key-frames” and reconstructed respect to 
successive previous reconstructed “key-frames”. In [5] a block-
based selective video sampling approach has been proposed 
where, frames of video stream categorized to reference frames 
and non-reference frames. Each reference frame were sampled 
based on conventional video compressing techniques such as 
MPEG. Non-reference frames are divided non-overlapping 
blocks of same size. Sparsity of each block is predicted by latest 
reference frame. CS was applied to the blocks that identified as 
sparse, whereas the remaining blocks were sampled fully. In [6], 
we have introduced a low-complexity DCVS framework. where, 
to obtain a fair quality, each “CS-frame” has been constructed 
using compressed data respect to generated side information (SI) 
from latest pair of reconstructed “key-frames”. In [7] a 
dictionary learning-based DCVS has been proposed. where, 
video stream are divided to key-frames and CS-frames. Key-
frames are sampled and reconstructed using common CS frame-
based techniques. CS-frames are sampled using block-based 
random projection. To reconstruct each CS-frame, a dictionary 
was built using two of previous reconstructed key-frames in 
combination with SI generated from them. K-SVD was applied 
to learn the dictionary.  

In this paper we propose a novel method for DCVS. The 
proposed compression scheme divides the video sequence into 
“key-frames” and “CS-frames”. Key-frames are sampled and 
recovered using common CS techniques. CS-frames were 
compressively sampled with a sampling rate much less than key-
frames. To reconstruct each    CS-frame, a dictionary is built 
using SI. SI can be generated by motion compensated 
interpolation from previous reconstructed key-frames. 
Dictionaries are learned in 9/7 wavelet domain using recursive 
least square dictionary learning algorithm (RLS-DLA) [8]. The 
simulation results illustrates that using RLS-DLA although 
significantly reduces the number of samples, it preserves video 
quality in fair level.  The main contributions of this work are that 
dictionary learning is done by RLS-DLA on SI generated from 



previous reconstructed key-frames to obtain an efficient 
sparsifying basis for constructing CS-frames.  

II. RELATED WORKS 

A. Compressed Sensing Theory 

In the field of signal processing, the Nyquist-Shannon 
sampling theorem [9] states that to preserve information, 
sampling rate must be at least twice the highest signal frequency 
component. Using this method in most state of the art signal 
processing applications such as video processing applications, 
generates large amounts of data to transmission or storing.  

CS is a novel framework that samples and compress data 
simultaneously in the sub-Nyquist sampling rate with small 
sacrifice in reconstructed signal [2], [10].In this part, we briefly 
review CS concept. 

Suppose that each frame of a video sequence demonstrated 
as  � = ��, ��, … , �� . �, is k-sparse, if representation of it in an 
orthonormal basis has at most k nonzero entries: 

��×� = Ψ�×� .  ��×�. (1) 

where  is an orthonormal basis matrix (or dictionary) can 
provide a k-sparse representation for � and s is representation of 
α in  where �  can be well approximated using only � ≪ �  
non-zero entries. CS states that �  could be reconstructed 
accurately using a relatively small number of non-adaptive 
linear projection measurements: 

��×� = Φ�×� . Ψ�×� .  ��×�. (2) 

where  �  is measurement vector which can be considered as 
compressed version of �  and Φ  is a measurement matrix 
incoherent with Ψ. Since � ≪ �, there are infinite solution for 
(2) , accordingly traditional methods such as least square are not 
able to solve it. CS states that if � is k-sparse in some known 
transform domain, i.e. ||�||� ≤ �, where ||. ||� is �� norm, then 
to reconstruct �, the following underdetermined problem should 
be solved: 

��×� = Φ�×� . Ψ�×� .  ��×� = Θ�×� . ��×�. (3) 

where Θ is a � × �  measurement matrix. If   � ≥ 2�  and Θ 
meets restricted isometry property (RIP) conditions [11]. Then 
(3) could be uniquely solved through finding the sparsest 
solution for: 

min ||�||�     �. �.      � = Θ. �. (4) 

Numerical solution to solve (4) are unstable and NP-
complete. In [11] it has been proved that if Θ meets restricted 

isometry property (RIP) conditions with parameter �2�, √2 −

1�, then  �� norm can efficiently approximates k-sparse signal 

using only � ≥ ��� log �
�

�
��  where, � < � ≪ � 

measurements with computational complexity of �(��).  

B. Distributed Compressed Video Sensing 

In conventional video coding systems, such as 
H.264/MPEG-x, the temporal correlation between successive 
frames is obtained using complex algorithms such as motion 
compensation in the encoder side. In Distributed video coding 
(DVC), correlation between two frames can be obtained by 
encoding separately and decoding jointly.   

 In distributed compressed sensing (DCS) [12], each frame 
of a video sequence is measured independently using CS and 
reconstructed jointly at decoder. In [6], we proposed a 
framework to simultaneously sensing and compressing video 
frames. We used various sampling matrices in encoder side and 
nonlinear reconstruction algorithm to reconstruct video frames 
in decoder side e.g. gradient projection for sparse representation 
(GPSR) and non-linear conjugate gradient algorithm (NLCG) 
[13]. 

C. Dictionary Learning 

Dictionary learning is a topic in signal processing area to 
find a representation of original signal that approximates it with 
as few atoms as possible [8]. In sparse representation a vector  
� is represented or approximated as a linear combination of 
some few of the dictionary atoms. The approximation of � can 
be written as: 

������� = ��. (5) 

where  � is a vector of coefficients includes most of the entries 
equal to zero.   

The key concept of dictionary learning is the choice of 
sparsifying basis (dictionary). There are many pre-specified 
sparsifying basis e.g. discrete wavelet transform (DWT), 
discrete cosine transform (DCT), curvelets and etc. These bases 
are computationally fast and simple for implementation 
although, they are not able to represent a signal efficiently. If 
the basis be a dictionary extracted from the image itself, it 
provide much sparser representation for the image [14]. 
Incoherency between dictionary D and Φ can be achieved by 
generating a random matrix via some known random 
distributions. 

 

III. THE PROPOSED METHOD 

In contrast with traditional video coding approaches, DVCS 
implements acquiring video data and compression in a unified 
task using random projecting of each frame at a low-complexity 
encoder. As a result, CS transfers the complexity to decoder side 
which is more acceptable in most of the modern video 
applications, e.g. visual sensor networks. In the following parts 
we investigate the architecture of our proposed method then we 
discuss two sides of proposed method separately. 

A. The Architecture of Proposed Method 

The main structure of proposed method is based on our 
previous work in [6] . The Architecture of proposed method in 
this paper is shown in Fig. 1 and each stage is explained 
subsequently: 



 

 

B. Description of Encoder Side 

The proposed method, divides a sequence of video into 
several group of pictures (GOP) at encoder side. Each GOP 
includes a key-frame followed by some CS-frames. Each key 
frame compressively sampled via CS random projection. We use 
scrambled block Hadamarad ensemble (SBHE) matrix as 
measurement matrix, which uses partial block Hadamard 
transform followed by randomly permuting its columns. DWT 
used as sparsifying transform domain. As our previous work [6] 
the sampling rate for key-frames are set to 0.5.  

To sample the CS-frames, we use a dictionary learning 
approach formulation proposed in [8]. In this approach, each 
CS-frame �� represented as a vector �, directly generated from 
non-overlapping patches of the image. Let �  be a matrix of 
columns vectors  �� and  �  a matrix of coefficients with  ��  as 
columns. Respect to � and �, the dictionary learning problem 
can be formulated as a hard optimization problem: 

�����, �����  = arg  min
�,�

||�||� +  Υ || − ��||�
�. (6) 

where � is sparse matrix obtained from sparse approximation of 
�  using dictionary �.  Solution for (6) could be found using 
order recursive matching pursuit (ORMP). We apply frame 
based random projection as y =  Φ . �  to obtain measurement 
vector. Using dictionary learning approach, the sampling rate for 
CS-frames are set to about 0.25. Then �  is transmitted to 
decoder side as compressed version of ��.  

C. Description of Decoder side for Key-Frames 

At the decoder side, each key-frame is reconstructed using 
GPSR, which solves the following convex unconstrained 
optimization problem:   

min
��

||�� + Θ��||�
� +  �||�� ||�. (7) 

where �����
 is received measurement vector, Θ = Φ. Ψ, Φ is 

the measurement matrix,  Ψ  is the DWT basis,  is a non-

negative parameter and �� is the sparse term coefficient vector. 
(7) Could be solved via SpaRSA algorithm [15].  

D. Description of Decoder side for Key-Frames 

As mentioned before, extracting sparsifying basis from 
image itself, results in much sparser representation for the image 
despite the fact that it is impossible to acquire such a basis in 
decoder side from the measurements. Dictionaries learned from 
neighboring images is the best way to obtain such basis.  

To reconstruct each    CS-frame ��, its SI is generated via SI-
generation methods such as motion-compensated interpolation 
of previous key-frame ����   and next key-frame as  ���� . A 
dictionary is learned using recursive least square dictionary 
learning algorithm (RLS-DLA) on SI as follow. First we extract 
non-overlapping patches from generated SI. Each patch is made 
into a training vector simply by lexicographically ordering of the 
pixels. The training vectors that are selected in a random way 
from the set of training images, are presented for RLS-DLA 
algorithm. The initial dictionary  �� is made using the K first 
random training vectors. The current dictionary continuously 
will be updated at each step. In RLS-DLA they are defined a 
time step ‘ � ’, the matrix  ��  of size  � × � , �� =
[ ��,  ��, … ,  ��] of size � × � and �� = ( ���

�)�� as well as 
 �� which is the least square minimization of || �� −  ���||�

� . In 
each step a new training vector ��  is provided and the 
corresponding weights �� are found using the latest dictionary 
���� and a vector selection algorithm [8]. Updating rule is as 
follow: 

�� = ���� − ����. (8) 

�� = ���� − �����. (9) 

where � = ������  and � = 1/(1 + ��
��), �� = �� − ������  is 

the representation error. Introducing an adaptive forgotten factor 
�� in step �, results in the less dependency of dictionary on the 
initial dictionary and improving convergence properties of it. 
The training process will be done in two stages. First we obtain 
��  by a Matching Pursuit algorithm using a stop criteria on 
approximation error. The second stage updates the dictionary 
and ��. As depicted in Fig. 1, after obtaining dictionary, we use 
it as basis matrix to reconstruct the CS-frames.   
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Random Projection
Rate=0.25

Key-frame

CS-frame
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Reconstruction

SI-Generator

Dictionary Learning
Using RLS-DLA

Reconstruction

Reconstructed 
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Figure 1.    The architecture of proposed method 

TABLE I.  COMPARISIONS OF RESULTS 

Video 
Sequences 

Method SNR PNSR SSIM 

 
Average of results 
for two successive 

CS-frame of 
Coastguard 

ILS-DLA 15.85 33.66 0.91 

K-SVD 16.72 34.11 0.93 

RLS-DLA 17.92 36.94 0.96 

Average of results 
for two successive 

CS-frame of 
Foreman 

ILS-DLA 17.02 35.54 0.93 

K-SVD 17.52 37.22 0.94 

RLS-DLA 18.73 40.62 0.97 

 



IV. RESULTS 

 In this section, we evaluate the performance of proposed 
method on the two well-known video sequences (“Foreman” 
and “Coastguard”) with a CIF resolution of 352 × 288 pixels 
and GOP=2. Experiments were performed using Matlab 2014b, 
on a computer with Intel® CoreTM �7, 4.0 GHz processor with 
16 GB of RAM. To evaluate the proposed method, three 
applicable quality assessors, the signal-to-noise ratio (SNR), the 
peak signal-to-noise ratio (PSNR) and structural similarity 
(SSIM)  were employed. The key-frames are sampled via the 
SBHE [SBHE citation] and constructed using the method 
proposed in [16], with measurement rate equal to 0.5. To 
reconstruct the Cs-frames which is sampled in a rate much less 
than key-frames (sampling rate ≈ 0.25), we use a dictionary 
learning approach proposed based on [8]. We use the dictionary 
generated from related SI as a basis to restore the sparse 
representation of image. The dictionary size is set to 64 × 440, 
corresponding to 8-by-8 patches of image in three level dyadic  
9/7  wavelet in DWT domain. We randomly pick 1500 patches 
from each of training images in transform domain. To apply 

 

 RLS-DLA, a new training vector selected randomly in each 
iteration. ORMP is used for vector selection. Learning error 
limit, adjusted using target PSNR equal to 38 dB. 

The results of proposed method compared with two 
dictionary-learning based image and video compression in 
TABLE. 1 and Fig.2. The first compared method is DCVS 
based on dictionary learned by K-SVD and the second one is 
DCVS based on dictionary learned by ILS-DLA. 

Results in   TABLE. I, TABLE. II and Fig.2 shows that 
using a dictionary based approach based on RLS-DLA 
outperforms K-SVD and ILS-DLA in quality measures. 
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