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Abstract—Self-similarity property of fractal shapes allows 

fractal antennas to be compact, multiband, or even 

wideband. Applying fractals to antenna arrays also 

develops multiband or broadband arrays. In this paper, 

we have investigated the multiband behaviour of fractal 

antenna arrays based on cantor set linear generators, 

which is impossible for classical arrays to achieve. After 

that, we have optimized the designed structure for 

maximum directivity using Particle Swarm Optimization 

(PSO) algorithm, both for theoretical and full-wave cases. 

A comparison between two methods is also included. This 

comparison helps to figure out that analytical formulas for 

fractal arrays are not only super-fast, but also completely 

precise despite of their simple form and hence their results 

are completely reliable and accurate. 
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I. INTRODUCTION 

   Over the past decade, data consumption of users over 

mobile broadband has continued to explode due to 

powerful new networks, new handheld devices, and 

close to two million mobile applications [1]. This 

challenge has led to new opportunities for antenna 

industries to find novel ways of handling that vast 

amount of data rates. In fact, using both compact and 

multiband antennas is the last and definitely the best 

way to simultaneously see all the demands of users at 

different frequencies. Undoubtedly, fractal antennas are 

the key solution to this problem. 

   From the time that Mandelbrot used the term "fractal" 

to describe the shapes that are self-similar in their 

structures [2], a wide variety of applications for fractals 

has been successfully introduced in many branches of 

science and engineering. Our branch of intense interest 

is called "fractal electrodynamics", in which new 

problems of radiation, propagation, and scattering are 

solved by means of fractal geometries [3-6]. 

   For years, there has been considerable interest in the 

possibility of developing new types of antennas that 

employ fractal concepts in their design, formally called 

"fractal antenna engineering". Fortunately, self-

similarity of fractals allows for smaller and 

multiband/broadband antennas because different parts 

of the antennas are similar to each other at different 

scales [7]. Applying the concept to antenna arrays also 

introduces multiband/broadband arrays that can be 

optimized for their gain or directivity. 

   A rich class of fractal arrays exists that can be formed 

by repetition of a subarray, officially called generator, 

or initiator. In fact, a generating subarray is a small array 

at scale one (P = 1) which is used to construct larger 

arrays at higher scales. The final fractal array is then 

produced by copying and scaling of the generator. As a 

matter of fact, the fractal arrays are known to be arrays 

of arrays [8]. AF of these fractal arrays can be expressed 

in the general form 
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where ( )GA  represents the array factor associated with 

the generating subarray. The parameter is the scale 

factor that controls the grows of the array with each 

iteration [9-10]. The expression given in (1) is simply 

the product of scaled versions of a generating subarray 

factor and hence, is a formal statement of the pattern 

multiplication theorem for fractal arrays. 

   When P  , then 
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which means that the array repeats its radiation pattern 

over completely known discrete frequencies, called 

"frequency shift property" [11]. These frequencies can 

be expressed as 
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     (3) 

in which 
0f  is the design frequency. 
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   A simple but powerful design methodology is based 

on the generators that use cantor set linear arrays, in 

which we can control the behavior of the arrays by 

turning on (i.e. 1) or off (i.e. 0) the individual elements. 

The normalized array factor for these arrays may be 

expressed in the form 
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where 2 1 ( 1,2,...)n n    ,  0cos coskd    , 

d is the space between elements, and 2 /k    is the 

wavenumber. 

   The fractal array factor for a particular stage of growth 

P may then be derived directly from (1). The resulting 

expression in normalized form is 

 
  1

1
1

sin 0.5 12

1 sin

pP P

P
p

p

AF
  


  






      
     

   (5) 

 

II. PARTICLE SWARM OPTIMIZATION 

   Particle Swarm Optimization [12], commonly known 

as PSO, is a metaheuristic self-organizing algorithm 

developed by Kenedy and Eberhart in 1995 which is 

inspired by swarms in which a group of particles 

cooperate with each other, just by 3 simple rules, in 

order to find the best solution. The rules are 

1. moving in the same direction of neighbors 

2. being close to the neighbors 

3. avoiding colliding with neighbors 

   The velocity and position of particles is updated with 

the equations 

)6( 
   

 

1 1 ,

2 2 ,      

n n best n n

best n n

v w v c r g x

c r p x

   

 
 

)7( 
n n nx x v  

in which w is a weight parameter to control the 

tendency of particles to move, 
1r  and 

2r  are two random 

numbers in [0,1]  to show the randomness of movements 

of particles, 
1 2 2c c are used to control the amount 

of attraction of particles to each other, 
bestp is the best 

solution of each particle, and 
bestg is the best solution 

of the swarm found so far. 

   w is also modified to better manage the inertia of the 

particles. In the linear case, 
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in which maxIt  is the maximum number of required 

iterations. The flowchart of this algorithm is shown in 

Figure 1. 

 

    

III. DESIGN & ANALYSIS PROCEDURES 

   Consider a simple 3-element linear cantor set subarray 

in the form of 101, as shown in Figure 2(a). If we use 

this as the generator for our fractal array, then the next 

stage would be the configuration of 101000101, shown 

in Figure 2(b). As mentioned, this is achieved by 

replacing each of the elements of the subarray by an 

exact copy of original subarray. The next stage 

(101000101000000000101000101) is also shown in 

Figure 2(c). 

    

 

 

Figure 1. PSO flowchart 

(a) 

(b) 
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Figure 2. Fractal antenna array based on 101 cantor set 

subarray (a) Stage 1 (b) Stage 2 (c) Stage 3 

 

   After investigating the multiband behavior of the final 

array, which is simply composed of 4 or 8 half-wave 

dipole antennas at center frequency of 8.1 GHz with 

scaling factor 3  , it will be then optimized for 

maximum directivity using PSO algorithm. 

 

IV. RESULTS 

   Figure 3 shows the radiation pattern of cantor set 

subarray. As it can be seen from Figure 4, the stage 2 

has replicated the pattern of generator in a new 

frequency. In other words, by using stage 2, the 

radiation pattern of generator at design frequency is now 

shifted to a new frequency, which is  times less than 

the design frequency, as predicted by (3). At the same 

time, the same pattern is also reproduced at the design 

frequency, except with some side-lobes. 

 

 

 

Figure 3. Radiation patterns of cantor set generator 

(a) Full-wave (b) Fractal concept 

 

 

 

 

 

Figure 4. Radiation patterns of Stage 2 

(a) Fractal concept 

(b) Full-wave (New frequency: 2.7 GHz) 

(c) Full-wave (Design frequency) 

 

   Figure 5 shows the radiation patterns of stage 3 fractal 

array. As seen, the stage 3 has now replicated the pattern 

of generator in another frequency. In other words, by 

using the stage 3, each of the radiation patterns of Figure 

4(a) is now shifted to the next new frequency, which is 

 times less than the previous frequency, as predicted 

by (3). At the same time, the same pattern is also 

reproduced at the original frequency, except with some 

side-lobes. 

 

 

(c) 

(a) 

(b) 

(a) 

(b) 

(c) 

Figure 5. Radiation patterns of Stage 3 
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   Figure 6(a) shows the convergence of PSO algorithm 

for 5 particles and 50 iterations of optimization. Figure 

5(b) also shows the convergence of CST's PSO 

optimization engine with 5 particles and 15 iterations of 

optimization. 

 

 

 

Figure 6. Convergence of PSO algorithm 

(a) Theory (b) CST STUDIO SUITE 

 

   As it can be seen from Figure 6, theoretical PSO has 

converged to 0.316d  , and CST has converged to 

0.307d  . This little difference is obvious because if 

we look at Figure 2(c), for example, we see that with 

each iteration, some elements become too close to each 

other which indeed increases the coupling. The most 

important thing is that both methods have nearly 

converged toward a similar distance.  

   Figure 7(a) shows the theoretical maximum directivity 

[13] of the array. Also Figure 7(b) shows the full-wave 

maximum directivity for different values of d . These 

two figures are another proof for the correct 

convergence of optimization processes. 

 

 

 

Figure 7. Max. directivity for different values of d 

(a) Fractal concept (b) Full-wave 

 

   As Figure 7 shows, both theoretical and full-wave 

methods have similar behaviours and both have 

converged to the correct values, and this shows that the 

optimization is completely successful. So, the designed 

array will have its maximum directivity for  

31d     (9) 

 

V. CONCLUSION 

   In this work, we used a 3-element linear cantor set 

generator to produce a fractal antenna array at different 

stages, so that it can work in two or three bands of 

frequencies, which is nearly impossible for classic 

arrays to achieve. Then, PSO algorithm was 

successfully used to optimize the distance between the 

elements of the subarray to obtain the maximum 

directivity from the design. For this, we treated the 

structure with both analytical and full-wave analyses to 

get the best distance, which is   0.31d  . 
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