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Abstract: Power system monitoring and control relies on 

the result of dynamic state estimation. Installation of PMU 
in power grids in recent years makes it possible to study the 
dynamic properties of power system. However, it’s hard to 
replace PMU on all buses with the conventional 
measurement of SCADA system in near future and there 
are lots of traditional measurements of SCADA system. 
Therefore, it is reasonable to use both measured data for 
estimation, control … purposes. This paper presents a 
hybrid dynamic state estimation algorithm by the PMU and 
SCADA measurements and since we have different 
measurements obtained by PMU and SCADA system with 
different sampling rates, we can apply data fusion methods 
to improve the estimation results.  

The hybrid method is examined on 14 buses IEEE power 
system and the results show estimation improvement by the 
hybrid approach.  

 

Index Terms—Data fusion, Dynamic state estimation, 

Kalman filter, Phasor measurement unit, Synchronous 

generator 

I. INTRODUTION 

State estimation, introduced in 1969 by Fred 

Schweppe, is one of most important tools for the real-

time monitoring of power systems [1]. Nowadays, it is 

executed in most energy control centres (EMS) [2]. 

Conventional state estimators use measurements 

gained from SCADA systems which are consisted of 

voltage magnitudes, real and reactive power flows and 

power injections, measured with one sample per second. 

SCADA system provides only steady, low sampling data 

from system.  

The synchronized phasor measurement unit (PMU), 

developed in the 1980s, is considered to be one of the 

most important devices in the future of power systems. 

PMUs, can directly measure the voltage phasor at the 

installed bus and the current phasors of the associated 

lines with a high sampling rates such as 30 samples per 

second which has the ability to capture lower frequency 

system dynamics [3]. 

By fusing PMUs and SCADA measurements in power 

systems, limitation of SCADA system can be removed. 

PMU enables dynamic power system to be monitored on 

a more refine time scale [3-6].  

In the past, in steady state studies efficient techniques 

are used for combining the accurate and reliable data of 

PMU with SCADA. It was observed that the hybrid 

algorithm improves the static state estimation 

performance [7-10], but previously no work has been 

done to combine the SCADA and PMU data for dynamic 

state estimation improvement. 

Several methods have been applied to estimate the 

dynamic states of a single machine connected to an 

infinite bus [3-6, 11-13] but there is no research on large- 

scale power system state estimation. 

In large scale power systems, we can apply both 

centralized and decentralized estimation algorithms. 

However, decentralized estimation algorithm can be 

applied easily in practice. Therefore, we choose 

decentralized algorithm for large scale systems. In this 

algorithm, the state of each subsystem is estimated 

considering the effect of often subsystems and an 

approximate model is defined for interactions [14-15]. 

In this paper, we exploit the data fusion algorithm to 

fuse the PMU and SCADA data in a large scale power 

system and the estimation algorithm is implemented 

locally in each subsystem. 

This paper is organized as follows. In section II, the 

data fusion algorithm is presented. In section III, the 

decentralized state estimation is given. In section IV, the 

power system models, for multi-machine is described. In 

section IV, the algorithm is used for hybrid estimation of 

power systems. The result of simulation can be seen in 

section V. Finally, the conclusion is given in section VI.  

II. DATA FUSION ALGORITHM 

Data fusion is the process of combining information 

from different sources to obtain refined and complete 

description of states of the system [16].  

Suppose that there are N sensors gathering 

measurements with different sampling rates. An example 

of time-scale map is shown in Fig. 1: one sensor gathers 6 

samples in each data block, another one gathers 3 

samples per block and the last one, gathers 1 sample per 

block.  
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Fig. 1 Sampling time scale [16] 

 

The dynamic model of system with N sensors is 

defined as follows [16]: 

),(),(),()1,( kNwkNxkNAkNx                             (1) 

NikivkixkiCkiz ,...,2,1  ),,(),(),(),(                       (2) 

The dynamic system is modelled at the finest sampling 

rate N, where 1),(  nRkNx  is the state variable at the 

highest sampling rate at time k, nnRkNA ),(  and 

),( kix  is the k-th state vector at scale i. 

)(),(
1

nqRkiz i

qi 
  is the k-th measurement observed 

by sensor i with sampling rate .iS  NqiRkiC


),(  is the 

measurement matrix. 

The state space model based on each sensor i must be 

set up using the dynamic equations with N sensors 

formulized by (1) and (2). Therefore, it is assumed that 

the relation between ),( kix  and ),( kNx  can be 

considered as follows [16]: 
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And the formultion of dynamic model based on each 

sensor i can be defined as follows [16]: 
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In the following, the fusion estimation is given. Its 

assumed that  kkP Ni,  and  kkX Ni,
ˆ  are the estimation 

error covariance matrices and state estimation of  kX N  
based on (3) and (4) using kalman filter. The equations 

for each sensor i are independent of each other. The 

optimal fusion estimation is obtained as follows: 
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Fig. 2 shows the kalman filter process based on sensor 

i and Fig. 3 describes the fusion estimation’s algorithm.  

 
Fig. 2 Kalman filter based on sensor i. [16] 

 
Fig. 3 Flowchart of multi-rate multisensory data fusion [16] 

III. DECENTRALIZED STATE ESTIMATION  

To estimate sates of a large-scale system, it is advised 

to design a decentralized state estimation algorithm. In 

[14], it is assumed that the large-scale system is 

decomposed to subsystems and for each subsystems, a 

local estimator is designed to estimate the interaction and 

states of the subsystems, using only the information from 

local quantities [14-15].  

The large-scale system S, composed of N subsystems 

Si (i=1… N) is considered as follows:  
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Where, hi is the interaction of other subsystems. 
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The goal of this method is designing an estimator for 

each subsystem to estimate the interaction from other 

subsystem, hi, and the state of i-th subsystem. In this 

method, a basic dynamic model is defined for the main 

system and a dual model which describes the dynamic 

model of each subsystemsis considered for theinteraction 

effects [14]. 

The dynamic model of large-scale system for the main 

and dual systems are: 
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Where in
i Rx   is the state vector of i-th subsystem 

and ip
i Ru  is it's control function. ig

i Rw   is the 

disturbance and iq

i Rv   is the measurement noise, 

which are assumed to be bounded. Aii, Bi, Ci and Gi 

describe the dynamic of the isolated i-th subsystem. 
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Fig. 4 State and interaction estimation diagram at i-th subsystem[14] 

 

Aij describes the interaction matrix from the j-th 

subsystem, which are assumed to have appropriate 

dimension and the model (13) shows the dynamics of the 

interaction system [14].  

In [14], the following estimator is defined for the 

system (Fig. 4). 
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Where, K1 and K2 are filter gains and E, M, N, are 

appropriately dimensioned design matrices which 

substitute for the dynamics of the interactions [14].  
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hii ACN
~1                                 (16) 

 iii CACM
~~~                   (17) 

IV. POWER SYSTEM MODEL 

The model of a large-scale power system composed of 

n generators interconnected through a transmission 

network can be defined as follows [17-19]: 
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The linearized model is: 
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Usually, the terminal voltage and active power are 

chosen as outputs of the power system. Each generator 

output depends directly on both the local generator states 

and the states of others generator. The linearized output 

equations are as follows:  
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V. ALGORITHM FOR HYBRID 

ESTIMATION OF LARGE SCALE POWER 

SYSTEMS  

In this paper, we extend the method for data fusion 

algorithm that it is described in section II to a large scale 

system model.  

Consider the large scale system mode, we can see that 

the interaction term hi is appeared in (21) while in (1) it is 

not seen. The model will be similar to (1) and it is 

possible to apply the method of section II for its data 

fusion.  

It’s assumed that we have 2 sources or sensors with 

different sampling rates, PMU and SCADA, to estimate 

the dynamic sates of multi-machine power system. In this 

power system, suppose that SCADA measures terminal 

voltage Vt and terminal active power Pt and PMU 

measures terminal voltage Vt. 

In this section, the data fusion method of section II is 

extended to be applied on the large scale system model. 

The algorithm is given below: 
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3. Assume E, M and N as (15) - (17) 

4. Using data fusion algorithm, the dynamic model 

in finest sampling time   and the measurement 

equation for both PMU and SCADA assuming 

that the sampling time of SCADA is   times 

larger than PMUs is defined as follow: 

 

)()()()1(      kWkXkAkX                     (34) 

 

 )()()()( kVkXkCkZ PMUPMUPMU              (35) 

 

)()()()( kVkXkCkZ SCADASCADASCADA        (36) 

5. The whole model of each subsystem is (34) – 

(36). Apply the data fusion technique of section II 

to estimate the states of this model. 

In this section, hybrid state estimation by using data 

fusion algorithm and PMU and SCADA measurements 

calculated. In next section simulation results for multi-

machine is described. 

VI. SIMULATION RESULTS 

In this paper, we choose IEEE-14 buses system as the 

large scale system, that it can be seen in Fig. 5. 
 

Fig. 5 IEEE 14 bus power system 

This system has 5 generators on 1, 2, 3, 6 and 8 buses. 

If each generator and the related connected branches are 

considered as a subsystem, this large scale system will 

have 5 subsystems and each subsystem has its own 

dynamical model. The third order model is considered for 

describing the model of each generator. 

The purpose of this paper is to estimate the dynamic 

states of power system. At first, PMU measurements are 

used to estimate the dynamic states of power system. 

Then, PMU and SCADA data are combined using the 

proposed algorithm in section V. 

 

A. Dynamic estimation using PMU measurements 

For 14 buses IEEE power system model, the estimate 

of voltage and active power for generator bus 1 

considering the interference effects from other buses are 

shown in Fig. 6 and 7 for the centralized and 

decentralized cases, respectively. 

 
B. Dynamic estimation using PMU and SCADA 

measurements  
In this part, centralized and decentralized estimation 

results for multi-machine can be seen. First, we used the 

centralized model of power system that is described in 

section IV and used data fusion technique to estimate the 

sates of it. Then, by decentralizing centralized model of 

power system and dividing the system into five 

subsystems, again we used data fusion technique to fuse  
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Fig. 6 Centralized dynamic states estimation with kalman filter and 

using PMU measurements in multi-machine power systems 
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Fig. 7 Decentralized dynamic states estimation with kalman filter and 

using PMU measurements in multi-machine power systems 

 

the measurements of PMU and SCADA system. We 

assume that the ratio between rate of sampling of PMU 

and SCADA is α=50 and this means that for every 50 

data that is measured by PMU, 1 data can be measured by 

SCADA. 

The results of this two part can be seen in Fig. 8 and 9 

moreover the mean square error of estimation is given in 

TABLE I and II to compare the estimation results in 

hybrid and non-hybrid cases. 
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Fig. 8 Centralized dynamic states estimation with data fusion and 

using PMU and SADAC measurements in multi-machine power system 

 

 

 

 

 

 

TABLE I 

RESULTS OF ESTIMATION WITH PMU MEASUREMENTS 

AND HYBRID MEASUREMENTS 
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Fig. 9 Decentralized dynamic states estimation with data fusion and 
using PMU and SADAC measurements in multi-machine power system 

 

TABLE II 

RESULTS OF ESTIMATION WITH PMU MEASUREMENTS 

AND HYBRID MEASUREMENTS 

 

VII. CONCLUSION 

Dynamic state estimation can be performed by using 

PMU’s data, but it could not be possible to replace PMU 

in all buses of a network in near future and there are lots 

of data measured by SCADA systems. Therefore, in this 

paper we decide to combine measurements of PMU and 

SCADA to have a more accurate estimation.  

The measurements of this to sensor, have different 

sampling rates and the data fusion technique is used to 

fuse the measurements. The results on a sample 14 bus 

power system show that hybrid measurements will 

improve the accuracy of the estimation.  
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