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Abstract—In this paper, the resonant frequencies of a dual mode 

square SIW cavity with a corner cut perturbation are calculated, 

analytically. Since introducing the perturbation makes small 

changes in the field pattern of this cavity, the perturbation theory 

can be used to calculate the resonant frequencies. Using this 

theory, the first degenerate modes of the dual mode cavity are 

calculated, approximately. Also, the mode matching technique is 

used to calculate these resonant frequencies as the eigenvalues of 

the structure. The analytically obtained results are verified by 

comparison with full wave simulation results. For the 

perturbation size less than the third of diameter of the square 

cavity, the error between resonant frequencies obtained by 

perturbation theory and HFSS is less than 1%. The mode 

matching results are also in a good agreement with full wave 

simulation results. 
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I.  INTRODUCTION 

Well-known Substrate Integrated Waveguide (SIW) 
technology, as a promising alternative for the classical 
waveguide and planar structures, has found many applications 
in the realization of microwave and millimeter wave devices 
[1-2]. The structure of SIW is consisting of two rows of 
metallic pins which implement electrical contact between the 
top and bottom metallic layers of the substrate. For small 
distance between pins, the SIW operates like as a dielectric-
filled waveguide. So far, several passive and active 
components are realized by using of SIW technology such as 
antennas [3], filters [4-6], and etc. 

Dual mode filters which have a low profile structure and 
high performance operation conventionally are realized by 
introducing a perturbation in a cavity which supports 
degenerate modes [7]. If the electromagnetic field variation in 
the cavity due to introducing the perturbation is negligible, the 
perturbation theory can be used to calculate the resonant 
frequency of the perturbed cavity [8]. So far, several dual mode 
SIW filters, by using of circular and square shape SIW cavities 
are proposed [9-11]. The perturbation of these cavities is in the 
form of some metallic pins located inside the cavity [10] or a 
slot etched on the metallic layer of the substrate [11].  

Although the commercial full wave softwares, like as 
ANSYS HFSS and CST Microwave Studio, can be used easily 
to simulate the SIW components precisely, these general 
softwares are time-consuming especially in the optimization of 
sensitive components to frequency like as filters. Many 
attempts have been made to model the SIW structure based on 
the numerical methods such as Boundary Integral-Resonant 
Mode Extraction (BI-RME) [12] and Method of Moment 
(MoM) [13] for equivalent circuit extraction and also Mode 
Matching Technique (MMT) for dispersion analysis [14-16]. 
Until now, a number of works have been reported for 
simulating the SIW filters and SIW diplexers by using the 
numerical methods such as MMT [17-18]. The main focus of 
these papers is on obtaining the scattering parameters of the 
device.  

A corner cut square SIW cavity is proposed by the authors 
in [19] and using this cavity a fourth order dual mode SIW 
filter is realized [20]. In this paper, the resonant frequencies of 
the first degenerate modes of this cavity are calculated 
analytically by the perturbation theory and also by MMT. 
Structure of the corner cut square SIW cavity is shown in Fig. 
1(a) and the equivalent classical waveguide of this cavity is 
depicted in Fig. 1(b). Equivalent width of this cavity, a', is 
determined by the following formula [14] 
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where a is the width of cavity and p and d are the center to 
center distance of pins and diameter of pins, respectively. The 
first degenerate modes of the square SIW cavity are TE102 and 
TE201 modes or any arbitrary linear combination of them, for 
instance sum and difference of these modes with equal 
coefficients. It should be noted that since the height of substrate 
is much smaller than wavelength, there is no field variation in y 
direction. Also, TM modes cannot propagate in the SIW due to 
leakage from gaps between pins [1]. After introducing the 
corner cut perturbation, the field pattern of the resonant modes 
are symmetric with respect to the diameter of A-A'. Therefore, 
as discussed in [20] the new resonant modes are odd and even 
modes which are similar to the sum and difference modes with 
equal coefficients, except around the corner cut perturbation. In 
the following, the resonant frequencies of the odd and even 
modes are calculated.  



 

II. CALCULATION OF THE RESONANT FREQUENCIES BY 

PERTURBATION THEORY  

When a perturbation is introduced in a cavity, the resonant 
frequency of the perturbed cavity can be obtained by the 
following formula [8] 
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where f0, 0E and 
0H are the resonant frequency, electric field 

and magnetic field of early cavity, respectively and f, E and 
H are for the perturbed cavity.  Also, ∆S is the surface of the 
perturbation and V is the volume of the early cavity. Because 
E and H are unknown, the above relation cannot be used 
straightly. It is shown that if the electromagnetic field variation 
in the cavity due to introducing the perturbation is negligible, 
(2) can be rewritten as follows, approximately [8] 
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where ∆V is the volume of the perturbation. As shown in [19], 
particularly for small values of perturbation size, t, the 
perturbation causes a negligible change on the field pattern of 
the odd and even modes with respect to the sum and difference 
modes. Therefore, (3) can be used for the resonant frequency 
calculation of the odd and even modes. Fig. 2 illustrates a 

comparison between resonant frequencies obtained by HFSS 
and perturbation theory versus the perturbation size. A good 
agreement between results can be seen particularly for small t. 
For values of t less than the third of diameter of the square 
cavity, the error between resonant frequencies obtained by 
HFSS and perturbation theory is less than 1%.  

 

III. CALCULATION OF THE RESONANT FREQUENCIES BY 

MODE MATCHING TECHNIQUE 

In order to calculate the resonant frequencies of the dual 
mode cavity, as is seen in Fig. 1(b), the cavity is divided to two 
regions A and B. Therefore, for region A, that is -d2 < z < 0 and 
0< x < a′, by considering of M modes, the electromagnetic 
fields are as follows [21] 
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where anγ  and anY are the propagation constant and 

admittance of nth mode in the region A, respectively which are 
determined as  
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Similarly, for region B, that is 0 < z < d1 and 0 < x < b, we 
have  
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Figure. 2. Comparison of resonant frequencies of odd and even modes versus 

t obtained by HFSS and the perturbation theory (with a' = 29.88mm, h = 

1.54mm, p = 2.4mm, d = 1.4mm, and εr = 3.5)  
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Figure. 1. (a) Corner cut square SIW cavity and (b) its equivalent waveguide. 

  



where bnγ  and bnY  corresponding to the region B, are given by  
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By applying boundary condition of Ey = 0 in (4a) and (5a) at      
z = -d2 and z = d1, it can be written 
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Also, based on continuity of tangential components at the 
boundary of regions A and B, that is z=0, from (4a) and (5a) 
we have 
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Now by substituting of (6a) in (7a) and multiplying both sides 

of the equation by )sin( x
a

m

′

π
 and then, integration from z = 0 

to z = a' we have 
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Similarly, by substituting of (6b) in (7b) and multiplying both 

sides of the equation by )sin( x
b

mπ
 and then, integration from 

z = 0 to z = b it can be obtained 
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Equations (8a) and (9a) can be written in the matrix form as 
follows  
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where the above matrices are defined as follows 
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Finally by eliminating of [b+] from (10a) and (10b), it can 
be written as 
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The resonant frequencies of the cavity are the frequencies that 
make the determinant of coefficients matrix in the left side of 
[a-] in the above relation equal to zero.  

A MATLAB code is written to realize the above mentioned 
procedure based on MMT to calculate the resonant frequencies 
of the corner cut square cavity. Table I shows the resonant 
frequencies of the cavity obtained by MMT with assuming 10 
modes and also obtained by using of HFSS for different values 
of t in which a good agreement between results can be seen. To 
study the effect of the number of considered modes in MMT, 
the calculated resonant frequencies are listed in Table II for 
different values of M with assuming t = 9.2mm. It can be 
concluded that the results almost do not change for M higher 
than 10 and therefore, 10 modes seems to be enough to 
calculate the resonant frequencies. In this case, using a normal  



TABLE I.  RESONANT FREQUENCIES OBTAINED BY HFSS AND MMT 

(WITH a' =29.88mm AND M = 10) 

t (mm) 

Odd mode 

(HFSS) 

(GHz) 

Odd mode 

 (MMT) 

(GHz) 

Even mode 

(HFSS) 

(GHz) 

Even mode 

(MMT) 

(GHz) 

0 5.997 5.997 5.998 5.997 

2.83 5.999 5.997 6.007 6.004 

5.65 5.999 5.998 6.081 6.074 

8.48 6.001 6.000 6.270 6.260 

11.31 6.017 6.015 6.553 6.539 

14.14 6.072 6.071 6.872 6.860 

 

TABLE II.  RESONANT FREQUENCIES OBTAINED BY MMT (WITH             

a' =29.88mm AND t = 9.2mm) 

M 
Odd mode 

(GHz) 

Even mode 

 (GHz) 

1 6.101 --- 

2 6.003 6.271 

3 6.002 6.307 

6 6.002 6.317 

10 6.002 6.322 

20 6.002 6.323 

HFSS 6.003 6.331 

 

CPU, calculation by MMT takes around one minute which is 
one-sixth of the time elapsed by HFSS. 

 

IV. CONCLUSION  

The resonant frequencies of a corner cut square SIW cavity 
has been studied by using of perturbation theory and mode 
matching technique, in this paper. Perturbation theory is in 
acceptable agreement with full wave simulation results, 
particularly when the perturbation size is small and therefore, 
variations of field patterns are negligible. Mode matching 
technique is much faster than full wave simulation of cavity to 
obtain the resonant frequencies with the same accuracy.  
Assuming 10 modes in mode matching technique seems to be 
enough to calculate the resonant frequency of the cavity. 
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