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Abstract— A non-linear controller based on multiple linear 
models is proposed to regulate the output power of an industrial 
steam turbine. First, the operating regimes of the system are 
divided into 3 linear regions. Then, a controller auto-regressive 
integrated moving average (CARIMA) model is developed for 
each region and the general predictive control (GPC) law of its 
region is obtained. The linear models are used to capture the 
process dynamics at different operating points. The suggested 3 
local linear GPC laws are utilized within a framework using the 
concept of non-linear multiple models. For this purpose, the 
nonlinear control law is built by a weighted combination of the 
outputs of the linear controllers. The nonlinear controller 
consists of three linear GPC laws which may takes too much time 
to be updated at each sampling time. This is not suitable for 
online applications. Because of this fact, a fast version of GPC is 
considered. The fast nonlinear GPC is acted like a weighed 
discrete PID controller which is updated and retuned according 
to set point at each sampling time. Simulated industrial steam 
turbine is invoked for this study under the set point tracking and 
load disturbance. Simulation results show the performance and 
effectiveness of the proposed non-linear GPC controller.  

Keywords- non-linear systems; predictive control; steam turbine 

I.  INTRODUCTION 

The demand for producing electricity with higher qualification 
and competition between power suppliers has urged 
companies to look for automatic techniques to give better 
power delivery and assure reliability of the system. A sudden 
loss of load or disturbances in the distributed power system 
may cause electricity loss or even instability and power 
shutdown in the system [1].   
The load/frequency control is widely used in steam turbines 
for power system stability. Low frequency oscillations in the 
turbines are appeared because of changes in power balance 
between the mechanical power and the load demand. Speed 
governors have been considered for many years to eliminate 
these frequency oscillations [2]. To increase the reliability in 
the system and to reduce response time, fast actuating control 
valves are used instead of the conventional mechanical 
governors. Unfortunately, these changes are not enough to 
guarantee stability due to high interaction of dynamics 
between boiler and turbine and more modifications are 
needed. For this purpose, fast adaptive control is necessary to 
come up with new situations in the system [3]. 
Recently, many different methods are used for the control of 
steam turbines. Paper [4] obtains a control law based on gain 
scheduling method. In this method, the controller is selected 
from a look up table. Indeed, the control gain is set to pre-
obtained values for certain conditions. However, to apply the 

gain-scheduling controller, prefect knowledge of the system is 
necessary which makes this method to be impractical in most 
applications [5]. Robust controllers are considered in systems 
with high degree of uncertainty when other methods are failed 
to control the systems. These controllers are designed in the 
way to compensate the uncertainty in the wide range of 
operating regions [6]. When a mathematical nonlinear model 
of the system is available, it is straightforward to use nonlinear 
method like feedback linearization method for designing 
controller of the steam turbine. However, a completed model 
with explicit mathematical formula is not available for large 
scale systems [4, 7].  
Model predictive control has been considered in different 
fields [8, 9]. The aim of model predictive control is to predict 
the future system behavior by using a model to minimize an 
objective function. The idea of MPC came back to the 
1960’s[10]. It gained attention after publishing a paper on 
IDCOM [11] and Dynamic Matrix Control (DMC) [12, 13], 
then, Generalized Predictive Control (GPC) was introduced in 
[14, 15]. GPC is widely used in industries [16-19]. This 
method does not need the exact mathematical model of the 
system, neither much information about different components 
so that it can be applied to large scale systems. In this method, 
first, a linear model of the system is identified. Then, the 
control law is predicted such that the desired performance is 
determined over a finite time horizon [20].  
Predictive control has been noticed recently in many 
applications [21-24]. Dieulot et al. [25] develop an predictive 
controller for supervising a hybrid renewable energy system. 
The hybrid system integrates a gas micro-turbine, a storage 
unit and solar panels. The optimal criteria are energy delivery 
and storage costs. An adaptive fuzzy model predictive control 
is presented in [26] using the ant colony optimization. The 
online identification based on the fuzzy method is provided to 
identify the system parameters. The implementation on two 
nonlinear processes shows better performance in comparison 
with proportional integral-ant colony optimization controller 
and adaptive fuzzy model predictive controller. Cataldo et al. 
[27] introduce an optimal method for scheduling of a multiple-
line production plant consisted of parallel equivalent machines 
which can be activated at different speeds corresponding to 
different energ demands. The operating lines may be different 
in length and the energy consumption. The optimal control 
actions are computed by model predictive control to minimize 
energy consumption and to maximize the overall production.  
Steam turbines are considered in power plants to produce 
electricity, they are known as large scale systems with 
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complex structure. The steam turbine explained in this paper is 
a 440MW power plant with once-through Benson type boiler, 
comprising high, intermediate and low-pressure sections. This 
steam turbine is simulated by A. Chaibakhsh and A. Ghaffari 
[28]. This industrial simulated power plant has been used in 
different applications [29-32]. This paper presents a new 
method for control of steam turbine using fast implementation 
of non-linear GPC. For this purpose, first, a nonlinear input-
output diagram of the system is obtained. Then this diagram is 
divided into three linear sections and for each region, a local 
linear model is identified and GPC law is formulated. Then, 
the nonlinear GPC law is obtained by weighed combination of 
different control laws. The nonlinear GPC consists of three 
linear GPC and it takes a long time to be computed at each 
sampling time. To deal with this issue, a fast version of these 
linear GPC is considered. Indeed the fast nonlinear GPC is 
acted like a weighed PID controller which is updated and 
retuned according to set point at each sampling time.     
The paper is organized as follows. Section II gives a brief 
description of the steam turbine. The design methodology of 
fast nonlinear GPC is presented in Section III. Section IV 
illustrates simulation study of the purposed method and 
several simulation tests are carried out to show the 
performance of the fast nonlinear controller in comparison to 
fast linear controller. Finally, a summary of the results is given 
in Section V.  

II. AN INDUSTRIAL STEAM TURBINE 

Nowadays steam turbines play important roles in producing 
electricity in the world. Because of this issue they are designed 
and controlled in the way to increase their performances. To 
increase steam turbines’ thermal efficiencies, they are built to 
have a complex structure, consisting of multistage steam 
expansion subsections. This paper uses the steam turbine 
developed by A. Chaibakhsh and A. Ghaffari [21]. The steam 
turbine represents an industrial 440MW power plant with 
once-through Benson type boiler, comprising high, 
intermediate and low-pressure sections. The system consists of 
steam extractions (high pressure (HP), intermediate pressure 
(IP), low pressure (LP)), moisture separators, and the related 
actuators. Fig.1 shows the steam turbine conditions at 
extractions. 

 
Fig. 1. Steam turbine configuration and extractions. 

A nonlinear model is formulated by using energy balance, 
thermodynamic state conversion and semi-empirical 
equations. For this purpose, an optimization approach based 

on genetic algorithm is developed in [21] to estimate the 
unknown parameters of models. These parameters consists of 
functions describing specific enthalpy for liquid phase and 
specific entropy in both liquid and vapor phases as typical 
example, on the basis of experimental data gathered from a 
complete set of field experiments. In intermediate and low-
pressure turbines where steam variables diverge from prefect 
gas behavior in sub-cooled regions, the thermodynamic 
characteristics are dependent on pressure and temperature of 
each region. Thus, nonlinear functions are constructed in [21] 
to appraise specific enthalpy and specific entropy at these 
stages of turbines. Correspondingly, their relevant parameters 
are set for matching operational range of each subsection by 
using genetic algorithm. For more details refer to [21]. 

 

III.  THE DESIGN METHODOLOGY OF FAST NONLINEAR GPC 

The elementary theory behind the suggested fast nonlinear 
GPC is illustrated in this section. For this purpose, it is 
assumed that the nonlinear model can be available and 
linearized in several points. In the next subsections, for each 
local point, a controller based on GPC is developed, then, they 
are utilized within a unique framework as a nonlinear 
controller. Finally, a method is presented to convert the local 
GPC to the fast version.        

A. General predictive control (GPC)  

 In this section, the generalized predictive control (GPC) is 
considered. GPC is the most popular version of MPC which is 
introduced by D. W. Clarke, C. Mothadi, P. S. Tuffs [14, 15].  
 To apply GPC method, first, a local discrete model known 
controlled auto-regressive integrated moving average 
(CARIMA) model is applied for output prediction as follows: 

 A�q���y�t� = q�
B�q���u�t − 1� + ζ���	

∆
                        (1)                                                                                                          

Where u(t), y(t) and ζ(t) imply control input, output and noise 
input sequences of the system, respectively. In Eq. (1), A and 
B are polynomials in the backward shift operator q-1 as: 
 A�q��� = 1 + a�q�� + a�q�� + ⋯ + a��q��� 
B�q��� = b� + b�q�� + b�q�� + ⋯ + b��q���		               (2)  
d and ∆ are dead time and the difference operator (1-q-1 ) , 
respectively. The GPC cost function can be formulated as 
follows: 
J�N�, N�, N�, q, r� = ∑ q�i�[y"�t + j� − w�t + j�]�&'

()&*
+

∑ r�j�[∆u�t + j − 1�]�&+
()�                                                    (3) 

Where N1 and N2 signify minimum and maximum prediction 
horizons, Nu is control horizon, q(i) and r(j) are weighting 
sequences and w(t + j) is the future reference trajectory. 
The aim of predictive control is to calculate the future control 
sequence such that the plant output y(t) would be equal to a 
desired value in the future. Obtaining the future tracking errors 
can be achieved by using Diophantine approach. To formulate 
a j-step ahead prediction of model output, y(t+j), the 
Diophantine equation is considered as follow : 
1 = E(�q���Ã�q��� + q�(F(�q���	                                      (4) 
where Ã(q-1)=∆A(q-1) and Ej and Fj are polynomials 
uniquely defined, given over the prediction interval j. 
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According to Eqs. (2) and (4), the best predictions of future 
outputs are computed in the following: 
y"�t + j� = G(�q��� + ∆u�t + j − d − 1� + F(�q���y�t�    (5)    
Where G(�q��� = E(�q���B�q��� .  Here, a complete set of 
predictions where j runs from a smallest amount to a large 
value is considered. These values correspond to the minimum 
and maximum prediction horizons. For j < t the prediction 
process ŷ(t+j) depends on available data, but for j≥t some 
assumption needed about future control actions, which are the 
main key in the GPC. To determine Eq. (5) it is needed to 
calculate the Diophantine equation recursively.  
Then, equation (5) can be written in following form: 
y" = Gu1 + f                                                                            (6) 
Reference vector is given in the below: 
w = [w�t + 1�, w�t + 2�, … , w�t + N�]5                            (7) 
The cost function in equation (3) can be rewritten as follows: 

J = 6Gu + f7 − w8
5
6Gu + f7 − w8 + λu5u, q�i� = 1, r�i� = λ	       (8)                                                              

In this case, minimization of J, when no constraints are 
imposed on future controls signals, can be obtained by making 
the gradient of J equal to zero, as follows: 
u1 = �G5G + λI���G5�w − f�                                                (9) 
Notice the first element of u1 is ∆u�t�, so that the control law is 
determined by the following equation: 
u�t� = u�t − 1� + g�5�w − f�                                            (10)   
 Where g�5is the first row of �G5G + λI���G5 . 
  

B.  The nonlinear GPCmethod  

This section presents the idea of nonlinear GPC based on 
multiple models. GPC is a linear controller and it is not 
suitable for system with uncertainty or high nonlinearity. 
Because of this, in nonlinear system, incorporating GPC 
causes some problems. For example, divergence of the 
controller from set point when some large disturbances occur 
may cause instability. Although, the adaptive inherent of the 
controller assists the system to be robust in small changes or 
disturbance and the nonlinear system can work around set 
point, but the system cannot tolerate for large steps of changes 
in set points or disturbances. Nonlinear GPC using multiple 
local models is introduced by S. Townsend and G. W. Irwin 
[33]. To apply the nonlinear GPC, first, the nonlinear model is 
converted to several local linear models. Then, for each local 
linear model, a GPC law is driven. Finally, the nonlinear GPC 
law for three local models is obtained as follows:                                                        
u�<�=>�?�@	ABC = W� × u	ABC	F<@	=<G�=	H<
?=� + W� ×
u	ABC	F<@	=<G�=	H<
?=� + WI × u	ABC	F<@	=<G�=	H<
?=I               (11) 
Indeed, the nonlinear control law is a weighted combination of 
the outputs of the linear GPCs. Fig. 2 shows the block diagram 
of nonlinear controller for three local linear models. The 
weighting function Wi is defined in the way when the set point 
is in the region i, the Wi has the maximum value and other 
weighting functions have their minimum valves. 
Besides,	u	ABC	F<@	=<G�=	H<
?=	> is obtained by Eq. (10) where the 
local model i is used. It should be noticed that the nonlinear 
GPC is used in the Eq. (11) to capture the process dynamics at 
different operating points. For more details, refer to [33].  

 
Fig. 2. The structure of nonlinear controller for three local models. 

C. The fast version of nonlinear GPC method 

The GPC is a linear controller in which the implementation of 
its algorithm has some difficulties like the problem of existing 
inverse of matrix G5G + λI  at each iteration or the time of 
computing the control law especially for a large prediction 
horizon which may not be suitable in real applications. It 
becomes worse for nonlinear GPC based on multiple models, 
because several linear GPC laws are computed together. To 
deal with these issues, when nonlinear GPC based on multiple 
models is used, the plant’s parameters for each model are 
fixed, so that the controller’s parameters for each model are 
constant and they need to be determined once for each 
weighting factors of the controller. This property is used to 
design the nonlinear GPC controller. To obtain the nonlinear 
fast GPC, it is enough that the fast version of a linear GPC is 
considered [34]. Then, the fast version of the nonlinear GPC is 
obtained by combination of weighted linear GPCs. 
For this purpose, first, the CARIMA model for each local 
model of the steam turbine is considered in the following 
equation: 

A�q���y�t� = q�
B�q���u�t − 1� + ζ���	

∆
                           (12)        

Where 
A�q��� = 1 + a�q�� + a�q�� + aIq�I 
B�q��� = b� + b�q�� + b�q��      
Eq. (12) can be converted into the following format: 
y�t + 1� = �1 − a��y�t� + �a� − a��y�t − 1� + �a� −
aI�y�t − 2� + �aI�y�t − 3� + b�∆u�t − d� + b�∆u�t − d −
1� + b�∆u�t − d − 2� + ζ�t + 1�	                                      (13)                                                                        
Then, the best expected value for y"�t + j|t� is obtained as 
follows: 
y"�t + d + j|t� = 	 �1 − a��y"�t + d + j − 1|t� 	+ �a� − a��y"�t + d + j − 2|t� +
�a� − aI�y"6�t + d + j − 3|t�8 + �aI�y"6�t + d + j − 4|t�8 + b�∆u�t + j −
1� + b�∆u�t + j − 2� + b�∆u�t + j − 3�                                       (14)                                                                        
The control sequence is formulated by minimizing the cost 
function considered in Eq. (3). Where N� = 1, 	N� = N� = N . 
Minimizing Eq. (3) with respect to ∆u�t�,∆u�t + 1� …∆u�t +
N − 1� results in: 
Mu = Py + Q∆u�t − 1� + Rw                                           (15) 
Where u = [∆u�t�,∆u�t + 1� …∆u�t + N − 1�]5 
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y = [y"�t + d|t�		y"�t + d − 1|t�		y"�t + d − 2|t�	y"�t + d − 3|t�]5 
w = [w�t + 1�	w�t + 2� … 	w�t + N�]5 
M and R contain matrices of dimension N×N and P and Q 
consists of matrices of N×4 and N×3, respectively. Consider q 
as the first row of matrix M-1. Then, ∆u�t� is computed in the 
following: 
 ∆u�t� = qPy + qQ∆u�t − 1� + qRw                                 (16)          
Then, the control law can be rewritten as follows: 
∆u�t� = lR�y"�t + d|t� + lR�y"�t + d − 1|t�+lRIy"�t + d − 2|t� +
lRSy"�t + d − 3|t� + l��∆u�t − 1� + l��∆u�t − 2� + l�I∆u�t − 3� +
l@�w�t + 1� + ⋯ + l@&w�t + N�                                                   (17) 
The controller parameters are functions of weighting factors, 
	q�i�	and	r�j�	. They are calculated by interpolating in a set of 
previously computed valves. It should be mentioned that the 
valves of y"�t + d|t�, y"�t + d − 1|t�, y"�t + d − 2|t�, y"�t + d − 3|t� 
are given by Eq. (14). Finally, to compute parameters of the 
controller, a polynomial curve is fitted to each parameter. For 
this purpose, the following equation is used.  
p�x� = p�x� + p�x��� + ⋯ + p�x + p�W�                      (18)  
 

IV.  SIMULATION  TESTS AND RESULTS 

In this section, first, the structure of the purposed nonlinear 
GPC controller is presented. Then, a set of tests are simulated 
to show the performance of the controller. 

A.  The structure of the nonlinear GPC 

This subsection illustrates the structure of the suggested 
nonlinear GPC controller. The idea of multiple models is used 
to design the nonlinear GPC. For this purpose, first, the 
nonlinear response of the system is divided into several linear 
responses. To do this, the steady state response of the steam 
turbine from input to output is shown in Fig. 3. 

 
Fig. 3. The steady state response of the steam turbine 

The operating point of this steam turbine is between 0 and 
500MW. It can be divided into three regions consists of 0-
50MW, 50MW-100MW and 100MW-500MW. Then, a 
CARIMA model considered in Eq. (1) and (2) is identified for 
the each region. Besides, to have a better sense about the 

performance of the nonlinear controller and compare it with 
linear controller, a CARIMA model for the whole region is 
considered. It should be mentioned to obtain the CARIMA 
model for the each region, a pseudorandom signal is used in 
the steam turbine input and the output is computed. After this 
the CARIMA model is obtained by using these data. Table 1 
illustrates the parameters of these local models.            

 Table 1:The parameters of the local models. 

After this step, the linear GPC law for each local model is 
obtained by Eq. (10). Then the nonlinear GPC law is 
computed by Eq. (11). For this purpose, Gaussian functions 
are used in weighted functions of the local models. Fig. 4 
shows the Gaussian weighed functions of the local models. 

 
Fig. 4. The Gaussian weighed functions of the local models. 

The parameters of fast nonlinear GPC are now computed. 
Theses parameters are functions of weighting factors of the 
cost function, 	q�i�	and	r�j�	.  Finally, a polynomial curve is 
fitted to each parameter. The degree of polynomials is 
considered to be 5.  

B.  Test scenarios and results 

In this subsection different test scenarios such as set point 
tracking and disturbance rejection are considered to evaluate 
the performance of the fast nonlinear GPC method. For this 
purpose, first, set the weighting factors of the cost function on 
q�i� = 5	and	r�j� = 1 .  Then, set point jumps up from 0 to 
360MW at the beginning and from 360MW to 390MWat 
450s. Fig. 5 and 6 show the plant output and controller output, 
respectively. 

 Parameters of the CARIMA model  

local model 1 for region 
between 0-50MW  

A�q��� = 1 − 1.761q�� + 1.031q�� − 0.2617q�I	     
							B�q��� = .001912 + 0.01532q�� + 0.002587q��   

local model 2 for region 
between 50MW-

100MW  

A�q��� = 1 − 1.667q�� + 0.9436q�� − 0.2656q�I	    
							B�q��� = .001996 + 0.02089q�� + 0.002773q��   

local model 3 for region 
between 100MW-

500MW  

A�q��� = 1 − 1.834q�� + 0.8455q�� − .00946q�I	    
							B�q��� = .001153 + 0.01321q�� + 0.009886q��  

Off line local between 0-
500MW  

A�q��� = 1 − 1.77q�� + 0.968q�� − 0.191q�I	     
							B�q��� = .002199 + 0.01392q�� + 0.0002219q��   
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Fig. 5. The steam turbine output for set point tracking 

 
Fig. 6. The controller output for set point tracking 

 
To evaluate the performance of the fast nonlinear GPC, 
compare it with linear GPC. As it is seen from Fig. 5, the 
overshoot and settling time of the multiple models fast GPC 
are less than GPC. It is interesting to note that the settling time 
of the fast nonlinear GPC method for the first set point 
tracking is 310S which is much shorter than 380S for the 
linear GPC. The overshoot for the suggested method is 
430MW whereas it is 460MW for the linear GPC. 
Furthermore, for the second set point tracking the set point of 
the fast nonlinear GPC is much shorter than the linear GPC. 
However, it is notice from Fig. 6 that the fast nonlinear GPC 
needs more attempt to control the situation.      
Then, the steam turbine and controller output are considered in 
fig. 7 and 8 when a disturbance occur in the high pressure 
section at 550S.         

 
Fig. 7. The steam turbine output for disturbance rejection 

 
Fig. 8. The controller output for disturbance rejection 

As can be indicated from the Fig.7 that the fast nonlinear GPC 
is much better to cope with this disturbance. The disturbance 
is vanished at 750S for the fast nonlinear GPC whereas this 
time for the linear GPC is 950. It is noticeable from Fig. 8 that 
more attempt is needed from the nonlinear controller.      
Finally, it is important to note that the time which takes for 
computing the nonlinear GPC law for each iteration is 0.93 
second. Surprisingly, this time for the fast nonlinear GPC is 
0.0045S while it is 0.21 for linear GPC.  It is notice that the 
simulation is done using a three core Sony laptop with 4 GB 
RAM.   

V.  CONCLUSION 

This paper presented a fast nonlinear GPC method for a 
simulated industrial steam turbine. The steam turbine 
represented an industrial power plant with once-through 
Benson type boiler which consists of high, intermediate and 
low-pressure sections. To design the purposed nonlinear 
controller the idea of multiple models was used. The nonlinear 
controller was made by weighted combination of three local 
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models. The nonlinear GPC was acted like a weighted PID 
which was retuned according to the current set point. This 
methodology made the nonlinear GPC to be fast and simple 
for implementation. Several test scenarios were performed to 
evaluate the ability of the suggested fast nonlinear controller 
for set point tracking and disturbance rejection. The 
performance of the fast nonlinear GPC was much better than 
linear GPC.          
  

ACKNOWLEDGMENT 
The authors would like to thank Ali Chaibakhsh (Khajeh Nasir 
Toosi University of Technology) for their assistance and 
permission to used steam turbine model. 

 

REFERENCES 
[1] E. Swidenbank, M. D. Brown, D. Flynn, “Self-tuning turbine generator 

control for power plant,” Mechatronics, vol. 9, pp. 513-537, 1999.  

[2] F. B. Prioste, P.P.C. Mendes, and C. Ferreira, “Power system transient 
stability enhancement by fast valving,” Proceeding of IEEE/PES 
Transmission and Distribution Conference, 2004, pp. 639-644.  

[3]  X. X. Li, X. Y. Wang, F. S. Li, “Research on new type of fast-opening 
mechanism in steam turbine regulating system and optimization of 
operation tactic,” Journal of Zhejiang University - Science A, vol. 9, pp. 
633-639, 2008.  

[4]  H. Moradi, A. Alasty, F. Bakhtiari-Nejad, “Control of a nonlinear 
boiler-turbine unit using two methods: gain scheduling and feedback 
linearization,” Proceeding of ASME International Mechanical 
Engineering Congress and Exposition, 2007, pp. 491-499.  

[5] V. Chen. “Synthesis of the overall boiler turbine control system by 
single loop auto-tuning technique”, Control Engineering Practice, vol. 3, 
No.6, pp. 761-771, 1995.  

[6] A. B. Abdennour, K. Y. Lee, “A decentralized controller design for a 
power plant using robust local controllers and functional mapping,” 
IEEE Transaction on Energy Conversion, vol. 11, pp. 394-400, 1996.  

[7] W. Bolek, J. Sasiadek, and T. Wisniewski, “Two-valve control of a large 
steam turbine,” Control Engineering Practice, vol. 10, pp. 365-377, 
2002.  

[8] M. Oshima, I. Hashimoto, H. Ohno, M. Takeda, T. Yoneyama, F. Gotoh, 
“Multi-rate multivariable model predictive control and its applications to 
a polymerization reactor”, International journal of control, 59(3), 731–
742. 

[9]  W. K. Son, O. K .Kwon, M. E. Lee, “ Fault tolerant model based 
predictive control with application to boiler systems,” Proceeding of 
IFAC safe process, pp. 1240–1245 (1997). 

[10]  C. E. Garcia, D. M. Prett, M. Morari, “Model predictive control. Theory 
and practice, a survey,” Automatica, 25, pp. 33S348 (1989). 

[11]  J. Richalet, A. Rault, J. L. Testud, J. Papon, “Model predictive heuristic 
control: applications to industrial processes”, Automatica, 14, 413–428 
(1978). 

[12]  C. R. Cutler, B. L. Ramaker, “Dynamic matrix control – a computer 
control algorithm”, AIChE 86th national meeting, April, Houston, Texas 
USA (1979). 

[13]  C. R. Cutler, B. L. Ramaker, “Dynamic matrix control—a computer 
control algorithm,” Proceedings of automatic control conference, San 
Fransisco (1980). 

[14]  D. W. Clarke, C. Mothadi, P. S. Tuffs, “Generalized predictive 
control—part I,” The basic algorithm. Automatica, 23,137–148 (1987a). 

[15]  D. W. Clarke, C. Mothadi, P. S. Tuffs, “Generalized predictive 
control—part II,” Extensions and interpretations.  Automatica, 23, 149–
160 (1987b). 

[16] S. J. Qin, T. A. Badgwell, “A survey of industrial model predictive 
control technology,” Control Engineering Practice, vol. 11, pp. 733-764, 
2003.  

[17]  A. M. Faudzi, N.D. Mustafa, K. B. Osman M. A. Azman, K .Suzumori. 
“GPC Controller Design for an Intelligent Pneumatic Actuator,” 
Procedia Engineering, Volume 41, 2012, Pages 657-663  

[18] I. Suárez, J. Ma. Caballero, B. Coto “Characterization of 
ethylene/propylene copolymers by means of a GPC-4D technique,” 
European Polymer Journal, Volume 47, Issue 2, February 2011, Pages 
171-178  

[19] P. Sarhadi, K. Salahshoor, A. Khaki-Sedigh “Robustness analysis and 
tuning of generalized predictive control using frequency domain 
approaches” Applied Mathematical Modelling, Volume 36, Issue 12, 
December 2012, Pages 6167-6185  

[20]  E .F. Camacho, C. Bordóns, “Model predictive control, in: advanced 
textbooks in control and signal processing,” Springer, 2004. 

[21] Y. Kwak, J. H. Huh, C. Jang, “Development of a 
model predictive control framework through real-time building energy 
management system data,”Applied Energy, Volume 155, 1 October 
2015, Pages 1-13. 

[22] Y. Xia, W. Xie, B. Liu, X. Wang, “ Data-
driven predictive control for networked control systems,” Information 
Sciences, Volume 235, 20 June 2013, Pages 45-54. 

[23] J. Huber, H. Kopecek, M. Hofbaur, “ Nonlinear 
model predictive control of an internal combustion engine exposed to 
measured disturbances,”Control Engineering Practice, Volume 
44, November 2015, Pages 78-88 

[24]  M. Farina, A. Perizzato, R. Scattolini, “Application of 
distributed predictive control to motion and coordination problems for 
unicycle autonomous robots,”Robotics and Autonomous 
Systems, Volume 72, October 2015, Pages 248-260. 

[25]  J. Y. Dieulot, F. Colas, L. Chalal, G. Dauphin-Tanguy, “Economic 
supervisory predictive control of a hybrid power generation plant,” 
Electric Power Systems Research, Volume 127, October 2015, Pages 
221-229. 

[26]  S. Bououden, M. Chadli, H.R. Karimi, “An ant colony optimization-
based fuzzy  predictive control approach for nonlinear processes ,” 
Information Sciences, Volume 299, 1 April 2015, Pages 143-158. 

[27] A. Cataldo, A. Perizzato, R. Scattolini, “Production scheduling of 
parallel machines with model predictive control ,” Control Engineering 
Practice, Volume 42, September 2015, Pages 28-40 

[28] A. Chaibakhsh, A. Ghaffari, “Steam turbine model. Simulation 
Modeling Practice and Theory”,1145–1162 (2008). 

[29] K. Salahshoor, M. Kordestani, M. S. Khoshro, “Fault detection and 
diagnosis of an industrial steam turbine using fusion of SVM (support 
vector machine) and ANFIS (adaptive euro-fuzzy inference system) 
classifiers,” Energy 35 (2010) 5472-5482. 

[30]  K. Salahshoor, M. S. Khoshro ,M. Kordestani , “Fault detection and 
diagnosis of an industrial steam turbine using a distributed configuration 
of adaptive neuro-fuzzy inference systems,” Simulation Modelling 
Practice and Theory 19 (2011) 1280–1293 

[31]  K. Salahshoor, M. Kordestani, “Design of an active fault tolerant 
control system for an industrial steam turbine,” Applied Mathematical 
Modelling, Volume 38, Issues 5–6, 1 March 2014, Pages 1753–1774 

[32] M. Kordestani, M. S. Khoshro, A. Mirzaee,  “Predictive control of large 
steam turbines,” IEEE Asian control conference, Turkey, 23-26 June 
2013. 

[33] S. Townsend, G. W. Irwin, “Nonlinear predictive control, chapter11: 
nonlinear model based predictive control using multiple local models” 
IEE control engineering series, 2001. 

[34] E. F. Camacho, C. Bordons, “Model predictive control, chapter5: Simple 
implementation of GPC for industrial processes” second edition, 
Springer, June 2005.     


