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 

Abstract—A product-formula approach is used to stabilize 3D 

FDTD in a dispersive anisotropic magnetized plasma medium. 

The whole FDTD algorithm in a time step is split into three 

substeps, in two of which the complex medium properties are 

embedded. Another substep is an unconditionally stable FDTD 

(US-FDTD) in free space, where a locally one-dimensional (LOD) 

scheme is used here. The accuracy and stability of the proposed 

method are verified through simulation of wave propagation in a 

microwave cavity partially filled with a magnetized plasma slab.       

 
Index Terms— Cavity, finite difference time domain (FDTD), 

magnetized plasma, unconditionally stable. 

 

I. INTRODUCTION 

HE finite difference time domain method has been largely 

utilized in various electromagnetic problems involving 

complex media [1]. Specifically, there has been efforts to 

simulate wave propagation in dispersive and anisotropic 

media. There are many natural and artificial anisotropic 

materials that are frequently used in radar cross section control 

[2], microwave and Terahertz antenna substrates [3,4], a large 

class of optical components [5] and many other applications.   

  In the presence of an external applied magnetic field, a 

plasma exhibits the anisotropic behavior. It is a suitable 

medium for frequency shifting [6]. Electromagnetic wave 

propagation in a magnetized plasma is critically important for 

investigations of space weather hazards, satellite 

communications, radar, remote sensing and geophysics [7]. 

Also, there has been applications in efficiency enhancement 

and spectrum variety of slow wave structures partially filled 

with plasma [8]. 

  To date, researchers have proposed several ideas in FDTD 

transient simulation of magnetized plasma in a variety of 

research areas [2,7,9]. In these works, the Courant-Friedrich-

Levy number (CFLN) can not exceed unity and hence the 

methods are conditionally stable. However, in applications 

with fine geometric details and high quality factor, a CFL limit 

is much restrictive [1]. Although an ADI scheme is introduced 

to isotropic plasma [10], up to the authors’ knowledge no US-

FDTD is reported for an anisotropic plasma.  

In this paper, we develop a 3-D US-FDTD in magnetized 

plasma. First, the FDTD algorithm is derived and is proved to 
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be stable. Then, the application of the proposed algorithm is 

illustrated by computing the field waveforms and resonance 

frequencies in a PEC cavity partially filled with a magnetized 

plasma slab. The accuracy of the proposed algorithm is 

verified by comparing the method with conventional FDTD 

[2].    

II. PROPOSED UNCONDITIONALLY STABLE FDTD 

Maxwell equations in a dispersive magnetized plasma medium 

are in the following matrix form 
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where    is the polarization current density,   is the electron 

collision frequency and represents losses,    is the plasma 

frequency, and  ⃗⃗       ̂      ̂      ̂ is the electron 

gyrofrequency. Also,  ̿      (  ) and 
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It is clear that in (1) each element is a     matrix. To 

stabilize the algorithm we should transform the matrix in (1) 

to a skew-symmetric matrix (plus a diagonal matrix with 

nonpositive diagonal elements when the medium is lossy) [1]. 

A change of variables fulfills this requirement: 
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Therefore, 
 

 

  
[

 ⃗⃗ 

 ⃗̃ 

 ̃ 
]  [

       

       ̿ 

  ̿   ̿   ⃗⃗   
] [

 ⃗⃗ 

 ⃗̃ 

 ̃ 
]           ( ) 

 

where    
 

√    
. If the matrix in (4) is represented by   and 

the field vectors by   [ ⃗⃗   ⃗̃   ̃ ]
 

, the fields are updated as 

follows: 
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It is easy to show that ‖    ‖    ( )  , where  ( ) is the 

largest eigenvalue of the symmetric matrix (    )  ⁄  [1]. It 

has six zero eigenvalues and three negative eigenvalues 

    . Hence, ‖    ‖    and the proposed algorithm is 

stable. 

To compute     , the decomposition         is defined 

where    [
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] and 
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Magnetized plasma material properties are totally embedded 

in   . The matrix    is the free space propagator which 

includes all spatial derivatives. The update procedure is 

written as the following product formula [1,11] 
 

 (    )        ⁄            ⁄  ( )                    ( ) 
 
The approximation error in (7) is always less than  (  )  

where   is a positive constant [11]. It is seen that each time 

step is split into three substeps. Using Yee’s notation, (7) can 

be written in the more appropriate form of 
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At this stage, we may calculate        and     . The 

eigenvalues of   are 
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Then, according to Cayley-Hamilton theorem 
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in which,    are obtained as follows 
 

                                                   (   ) 

 ( )      (   )    
   

  ( )        ⁄          (   ) 
 
Hence, there exists a closed-form formula for       . 

However, it is lengthy and there is no need to write it down 

here. The important point is that computation of        is 

performed just once as a pre-processing task and therefore 

(10) adds almost no computational burden to the problem. 

The matrix equation (8a) consists of six equations. For 

example, the first equation is 
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where     is the (   ) element of       . This is also the case 

for (8c). 

The corresponding components of  ⃗  and    vectors are 

collocated in space in a Yee cell. This means that they are 

placed in the grid as (    ⁄ )(    ⁄     ), (    ⁄ )(    

  ⁄   ) and (    ⁄ )(        ⁄ ). With this assumption, 

there are some components of  ⃗   ⁄  on the right-hand side of 

(8a) and (8c), not collocated in space with the component on 

the left-hand side. Hence, an averaging scheme from four 

neighboring points is needed; for example when computing 

(    ⁄ )(    ⁄     ), other components are averaged as 

follows: 
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There are several ways to compute      which represents the 

free space propagation. Here we use an LOD-FDTD 

algorithm. To reduce the number of arithmetic operations the 

LOD1 fundamental scheme proposed in [12] may be used.  

III. VERIFICATION 

Fig. 1 shows a PEC rectangular cavity partially filled with a 

magnetized plasma slab. The cavity dimensions are (   
     )(  ) , where         is a FDTD spatial step. The 

plasma slab is located in the center of the cavity and is      

thick in the   direction. In the slab considered,        

         ,                       and   

       . As shown in Fig. 1, the source (S) and observation 

(O) points are located respectively at (        )   and 

(        )   on the opposite sides of the slab. The field 

component    at point S is excited by a Gaussian pulse. In [2] 

a conditionally stable FDTD in magnetized plasma is 

proposed which is referred to as conventional FDTD in the 

simulations which takes the role of a benchmark and is always 

run for CFLN = 1.  

Fig. 2(a) shows    observed at O as a function of time for 

conventional- and US-FDTD (CFLN = 10). As shown, the two 

methods agree well. Fig. 2(b) shows the cavity frequency 

spectrum at point O. The abscissa is normalized to    which 

is the dominant mode resonance frequency of an empty cavity 

with the same dimensions. As expected, there are some 

resonances in the cavity in the frequency range shown. Also, 

the agreement between the two methods verifies the accuracy 

of US-FDTD.  
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Fig. 1. A PEC cavity partially filled with a plasma slab. 

 
(a) 

 
(b) 

Fig. 2. Normalized Hz at point O for FDTD and US-FDTD (CFLN = 

10), (a) time-domain waveform, (b) frequency spectrum. 

Fig. 3 shows one of the resonant frequencies computed by 

the conventional- and US-FDTD (CFLN = 1 to 10). There is a 

compromise between the accuracy and computational 

efficiency. However, the error is small and is 0.9% for CFLN 

= 10. Finally, Fig. 4 shows normalized    computed by US-

FDTD for CFLN = 100 in 6000 iterations which clearly 

indicates the stability of the method.        

IV. CONCLUSION 

An unconditionally stable FDTD method using product 

formula is proposed in dispersive magnetized plasma, which is 

an anisotropic gyrotropic medium. The method is based on 

operator splitting and decomposes the problem into free space 

propagation and medium properties. The method is shown to 

be accurate and stable through simulation of a cavity partially 

filled with plasma.  

 
Fig. 3. The cavity resonance frequency for conventional- and US-

FDTD (CFLN = 1 to 10). 

 
Fig. 4. Normalized Hz computed by US-FDTD at 6000 iterations for 

CFLN = 100.  
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