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Abstract—In this paper, sum-rate maximization is investigated
in a two-way MIMO relay network where a multi-antenna
relay node assists two transceivers for exchanging their data.
For sum-rate maximization, beamforming weights are designed
whereas total transmit power constraint in the multi-antenna
relay node is satisfied. Assuming that the second order statistics
(SOS) of channel state information (CSI) are only available,
we confront with a non-convex optimization problem. Using
the semidefinite relaxation (SDR) technique and by help of the
bisection search method, the beamforming weights are specified.
Simulation results show, in a constant maximum allowable relay
total transmit power, increasing the number of antennas of multi-
antenna relay node increases the maximum sum-rate.

Index Terms—two-way networks, multi-antenna relay, general-
rank beamforming, second-order statistics, sum-rate maximiza-
tion.

I. INTRODUCTION

Beamforming design has absorbed attention as a candidate

in cooperative methods where cooperation between nodes of

network used in order that overcome to common challenges

in wireless networks, such as path loss. In this area, various

scenarios and assumptions are discussed in literature [1], [2],

[3], [4], [5]. In [2], a cooperative network has been considered

where a set of distributed relay nodes help a transmitter for

sending data to a receiver. In this network, with imperfect

CSI assumption, beamforming design has been followed in

two different strategies, namely Signal-to-noise ratio (SNR)

maximization under relay power budget constraint and total

relay transmit power minimization under quality of service

constraint.

Two-way relay assisted networks have been studied in liter-

ature. For avoiding interference in two-way relaying networks,

different strategies are suggested. Traditionally, it is suggested

that four time-slots used for exchanging data between to

transceivers through relay node. This strategy works as a half-

duplex scenario, because it is needed that the information of

one transceiver reaches to another one and then in opposite

way another transceiver sends its information. In [6], using net-

work coding method leads to reduce the number of time-slots

to three. Finally, by use of beamforming technique, the number

of time-slots for exchanging data reduce to two [7], [8]. In [8],

three different optimality criteria has been proposed, namely

total transmit power minimization under quality of services

(QoSs) constraints, total relay transmit power minimization

under QoSs constraints and SNR balancing under a total power

budget constraint with full CSI assumption.

The common assumption in two-way networks is that the

perfect CSI is provided [7]. In some literature there is this

presupposition that imperfect CSI is only included, and this

assumption adds more complexity to the problems. In [9],

assuming availability of the SOS of CSI, a two-way distributed

relay assisted network has been investigated. In this paper, the

authors has been determined the transmit beamforming vector

for Signal-to-noise-plus-interference ratio (SINR) balancing

under a total relays power budget constraint.

In this paper we consider a cooperative two-way network

where two transceivers exchange their information via a

helping multi-antenna relay node. By using MIMO relay, we

benefit receive and transmit beamformig jointly and this leads

to design of a general rank beamforming matrix. Assuming

the SOS of CSI is available, in this paper, the achievable

rate region is first determined and then the beamforming

weights are designed for sum-rate maximization whereas a

total transmit power constraint at the MIMO relay node are

satisfied. Since we consider the imperfect CSI, in determining

the achievable rate region and designing beamforming weights

for the main goal of this paper, i.e. sum-rate maximization, we

confront with non-convex optimization problems. We study the

optimization problems by use of the semidefinite relaxation

technique and the bisection search method.

Notation: Throughout this paper, we use the following

standard notations: (·)∗, (·)H , tr(·) and E{·} represent the

conjugate, the hermitian transpose, the trace and the statistical

expectation, respectively. The notation diag(A) is a vector

which contains the diagonal entries of the square matrix A
and diag(a) is a diagonal matrix whose diagonal elements are

different entries of the vector a. vec(X) is the vector obtained

from the matrix X. The notation I denotes the identity matrix.

⊗ stands for Kronecker multiplication.

The rest of this paper is organized as follows. In the next

section, based on second-order statistics of CSI, system model

of the MIMO relay assisted network is described. In Section

III, the achievable rate region is determined. In Section IV the

sum-rate maximization approach under total transmit MIMO

relay power constraint is developed. The simulation results

are given in Section V. And finally, the main results are
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Fig. 1. A two-way multi-antenna relay assisted network

summarized in section VI.

II. SYSTEM MODEL

As illustrated in Fig. 1, we consider a cooperative two-way

network consists of two transceivers and a multi-antenna relay

node. Each transceiver is equipped with single-antenna while

Nr antennas are embedded in the relay node. We assume there

is not efficient direct link between two transceivers due to

path loss, and so exchanging the information is only possible

through the relay node.

Assuming a flat fading scenario, we denote the channel vec-

tors between the transceiver 1 and the relay node and between

the relay node and the transceiver 2 by f1 = [f11 f21 . . . fNr1]
T

and f2 = [f12 f22 . . . fNr2]
T , respectively. It is assumed the

instantaneous channel state information is not available, and

we only access to SOS of CSI. The correlation matrices of the

channel vectors f1 and f2 can be expressed, respectively, as

Rf1 = E{f1f1H} Rf2 = E{f2f2H}

Let s1 and s2 denote the data symbols of transceivers 1 and

2, respectively whereas they have unit power, i.e. E{|s1|2} =
E{|s2|2} = 1. We consider a 2-step scenario for exchanging

data. In the first step, the multi-antenna relay receives data

from two transceivers, as

r =
√

P1f1s1 +
√

P2f2s2 + v (1)

Where r is the Nr × 1 received signal vector at the multi-

antenna relay node. Also P1 and P2 denote the transmission

powers of transceivers 1 and 2, respectively, and v is the Nr×1
additive white Gussian noise (AWGN) vector at the multi-

antenna relay node with correlation matrix Rv = σ2
vI.

The multi-antenna relay multiplies the received signal vector

by the Nr × Nr specified general-rank beamforming matrix

W, and resulting is sent to two transceivers in the second

step. It is worth to mention that the general-rank beamforming

matrix has been actually obtained by multiplying the receive

beamforming vector by the transmit one. As a result, the Nr×1
vector t transmitted by the multi-antenna relay node to two

transceivers in the second step can be expressed as

t = Wr (2)

The total power transmitted by the multi-antenna relay node

can be written as

Pr = tr(WE{rrH}WH) = tr(W(P1Rf1 + P2Rf2 + Rv)WH)

= wH(I ⊗ (P1Rf1 + P2Rf2 + Rv))w (3)

Where w = vec{WH}. The received signals in the transceivers

1 and 2 can be represented, respectively, by

y1 =
√

P1f1HWf1s1 +
√

P2f1HWf2s2 + f1HWv + n1 (4)

y2 =
√

P1f2HWf1s1 +
√

P2f2HWf2s2 + f2HWv + n2 (5)

Where nk is AWGN at the kth transceiver with variance σ2
nk

,

for k = 1, 2. Since it is assumed that the SOS of CSI is only

available and the transceivers don’t access to the instantaneous

CSI, by accepting an error term, we consider two transceivers

use the available mean of channel vectors, i.e. f̄1 and f̄2, for

eliminating the interference signal as

ỹ1 =
√
P2f1HWf2s2︸ ︷︷ ︸
desired signal

+
√
P1(f1HWf1 − f̄1Wf̄1)s1︸ ︷︷ ︸

undesired signal

+

f1HWv + n1︸ ︷︷ ︸
total noise

(6)

ỹ2 =
√
P1f2HWf1s1︸ ︷︷ ︸
desired signal

+
√
P2(f2HWf2 − f̄2Wf̄2)s2︸ ︷︷ ︸

undesired signal

+

f2HWv + n2︸ ︷︷ ︸
total noise

(7)

The powers of desired signals received by the transceivers 1

and 2 are expressed, respectively, as

Ps1 = P2E{|fH1 Wf2|2}E{|s2|2}︸ ︷︷ ︸
=1

= P2E{|tr(Wf2fH1 )|2}

= P2wHRhw (8)

Ps2 = P1E{|fH2 Wf1|2}E{|s1|2}︸ ︷︷ ︸
=1

= P1E{|tr(Wf1fH2 )|2}

= P1wHRhw (9)

Where Rh = E{hhH}, while h = vec{f1fH2 }. The powers

of undesired signals received by the transceivers 1 and 2 are

expressed, respectively, as

Pe1 = P1E{|fH1 Wf1|2}E{|s1|2}︸ ︷︷ ︸
=1

− P1E{|̄fH1 Wf̄1|2}E{|s1|2}︸ ︷︷ ︸
=1

= P1wHE1w (10)

Pe2 = P2E{|fH2 Wf2|2}E{|s2|2}︸ ︷︷ ︸
=1

− P2E{|̄fH2 Wf̄2|2}E{|s2|2}︸ ︷︷ ︸
=1

= P2wHE2w (11)



In (10) and (11), E1 and E2 are defined, respectively, as

E1 = (R∗
f1 ⊗ Rf1)− vec(̄f1 f̄H1 )vec(̄f1 f̄H1 )H

E2 = (R∗
f2 ⊗ Rf2)− vec(̄f2 f̄H2 )vec(̄f2 f̄H2 )H

The total noise powers at the transceivers 1 and 2 are ex-

pressed, respectively, as

Pn1
= E{|tr(WvfH1 )|2}+ σ2

n1
= E{|wHvec(vfH1 )|2}+ σ2

n1

= wHE{vec(vfH1 )vec(vfH1 )H}+ σ2
n1

(12)

Pn2 = E{|tr(WvfH2 )|2}+ σ2
n2

= E{|wHvec(vfH2 )|2}+ σ2
n2

= wHE{vec(vfH2 )vec(vfH2 )H}+ σ2
n2

(13)

Using (A ⊗ B)(C ⊗ D) = AC ⊗ BD, (12) and (13) can be

rewritten as

Pn1 = wHE{(f∗1 ⊗ v)(f∗1 ⊗ v)H}w + σ2
n1

= wHQ1w + σ2
n1

(14)

Pn2
= wHE{(f∗2 ⊗ v)(f∗2 ⊗ v)H}w + σ2

n2

= wHQ2w + σ2
n2

(15)

Where Q1 = R∗
f1 ⊗ Rv and Q2 = R∗

f2 ⊗ Rv . As a result, we

can express the SINRs in the transceivers 1 and 2 that defined

as the desired signal power divided by the sum of undesired

signal power and noise power, respectively, by

SINR1 =
P2wHRhw

P1wHE1w + wHQ1w + σ2
n1

(16)

SINR2 =
P1wHRhw

P2wHE2w + wHQ2w + σ2
n2

(17)

III. ACHIEVABLE RATE REGION

In this part, we investigate the achievable rate region. Let

us denote the rate from s1 to s2 and from s2 to s1 by R12

and R21, respectively. Considering two time slots used for

exchanging the data, the rates R12 and R21 can be presented

as

R12 =
1

2
log2(1 + SINR2) R21 =

1

2
log2(1 + SINR1)

Similar to [7] for determining the achievable rate region, the

following optimization problem is considered

min
w

Pr = wHTw

s.t R12 ≥ αr

R21 ≥ (1− α)r (18)

Where T = I ⊗ (P1Rf1 + P2Rf2 + Rv), α ∈ [0, 1] and r is

the sum-rate. In above problem, if the optimal value of Pr

satisfies the inequality Pr ≤ Pmax
r , the rates αr and (1−α)r

will be located in the achievable rate region, otherwise they

will fall outside of the achievable rate region. For solving the

optimization problem, the bisection search method is utilized.

In bisection search method, it is first needed to determine an

initial interval. We set the initial interval for the parameter r
as

rl = 0 ru = log2(1 + min(SINRmax
1 , SINRmax

2 ))

In recent consideration, SINRmax
1 and SINRmax

2 are

determined according to Rayleigh-Ritz ratio inequality

[2]. The process of finding optimum value is described in

algorithm (1). In this algorithm, ε specifies the accuracy of

finding the optimal values, and we consider it equal to 10−3.

Algorithm 1 Achievable Rate Region

Iinitializing:
rl = 0
ru = log2(1 + min(SINRmax

1 (Pmax
r ), SINRmax

2 (Pmax
r )))

while ru − rl ≥ ε do
r = rl+ru

2
Set r in (18) for obtaining Pr

if Pr ≤ Pmax
r then

rl ← r
else

if Pr ≥ Pmax
r then

ru ← r
end if

end if
end while

In the next section, assuming the availability of second-order

statistics of CSI, we determine the general-rank beamforming

matrix for sum-rate maximization approach under the total

transmit power constraint at the multi-antenna relay node.

IV. SUM-RATE MAXIMIZATION

In this part, we design the general-rank complex beamform-

ing matrix for the sum-rate maximization under the transmitted

relay power constraint in the following problem

max
w

Rsum = R12 +R21

s.t Pr ≤ Pmax
r (19)

Or, equivalently, as

max
w,Rsum

Rsum

s.t R12 ≥ α∗Rsum

R21 ≥ (1− α∗)Rsum

Pr ≤ Pmax
r (20)



In recent equation, α∗ denotes the optimal value of α deter-

mined from (18). Using definition X = wHw, the optimal

problem can be equivalently represented as

max
X,Rsum

Rsum

s.t tr(XL1) ≥ (2β1Rsum − 1)σ2
n1

tr(XL2) ≥ (2β2Rsum − 1)σ2
n2

tr(XT) ≤ Pmax
r

and rankX = 1 , X � 0 (21)

Where β1 = 2α∗ and β2 = 2(1− α∗). Also L1 and L2 are

defined, respectively, as

L1 = P2Rh − (2β1Rsum − 1)P1E1 − (2β1Rsum − 1)Q1

L2 = P1Rh − (2β2Rsum − 1)P2E2 − (2β2Rsum − 1)Q2

In (21), the rank constraint causes the optimization problem

is a non-convex problem. Regardless of the rank constraint, the

problem will be a quasi-convex problem. We find the optimal

value of Rsum by use of bisection search method. So the

following convex feasibility problem can be expressed

find

s.t tr(XL1) ≥ (2β1Rsum − 1)σ2
n1

tr(XL2) ≥ (2β2Rsum − 1)σ2
n2

tr(XT) ≤ Pmax
r

X � 0 (22)

In resent convex feasibility problem, using SDP, we research

the optimal Rsum in an initial interval [Rsum,l, Rsum,u]. The

process of finding optimum value is described in algorithm

(2). Similar to algorithm (1), we consider ε = 10−3.

Algorithm 2 Sum-Rate Maximization

Iinitializing:
Rsum,l = 0
Rsum,u = log2(1+min(SINRmax

1 (Pmax
r ), SINRmax

2 (Pmax
r )))

while Rsum,u −Rsum,l ≥ ε do
Rsum =

Rsum,l+Rsum,u

2
Set Rsum in (22) for checking the feasibility of the problem
if the problem is feasible then

Rsum,l ← r
else

if the problem is not feasible then
Rsum,u ← Rsum

end if
end if

end while

V. SIMULATION RESULTS

In this part we provide some simulations to evaluate the

performance of our proposed methods. In all simulations we

consider the transmission powers of transceivers as P1 = P2 =
0dB, and the noises’ variances as σ2

v = σ2
n1

= σ2
n2

= 0dB.

As previously mentioned, assumption used in this paper is that
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Fig. 2. The achievable rate region

the second-order statistics of CSI are only available. Like [2],

the channel vectors f1 and f2 are generated, respectively, as

f1 = f̄1 + f̃1 f2 = f̄2 + f̃2 (23)

Where f̄1 and f̄2 are the known mean vectors, and f̃1, f̃2 are

variations of the channel vectors around their nominal values.

f̄1 and f̄2 are generated, respectively, as

f̄1 =
ejθf1

√
1 + αf1

f̄2 =
ejθf2

√
1 + αf2

(24)

Where αf1 and αf2 are parameters which determine the level

of uncertainty in the channel coefficients and θf1 and θf2 are

random variable uniformly vectors distributed in [0, 2π]. f̃1
and f̃2 are zero-mean random variables whose variances are

determined, respectively, as

var(f̃1) =
αf1

1 + αf1

var(f̃2) =
αf2

1 + αf2

(25)

The correlation matrices of the channel vectors f1 and f2 are

expressed, respectively, as

Rf1 = f̄1 f̄H1 +
αf1

1 + αf1

I Rf2 = f̄2 f̄H2 +
αf2

1 + αf2

I

Fig. 2 illustrates the achievable rate region for different

values of the maximum allowable total transmit relay power

(Pmax
r ). In this simulation, the number of antennas in the

multi-antenna relay node are considered 10. Since the condi-

tions of two transceivers are considered similar, the figure is

formed symmetrically. As can be seen in Fig. 2, by increasing

Pmax
r , the available rates increase. These increments continue

to roughly Pmax
r = 30dB, and after that increasing Pmax

r

doesn’t substantially impact on the rates.

Fig. 3 shows the maximum sum-rate versus the maximum

allowable total transmit relay power for αf1 = −5dB and

different values of αf2 . Note that different values of αf2 are
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considered to test the impact of uncertainty in the channel

coefficients. As can be seen in this figure, rising certainty about

the channel coefficients, the maximum sum-rate increases.

Next, we investigate impact of increasing the number of

antennas in multi-antenna relay node, i.e. Nr. Fig. 4 represents

the maximum sum-rate versus the maximum allowable total

transmit relay power for three different values of Nr. As can be

seen in this figure, by increasing the number of antennas in the

multi-antenna relay node, the maximum sum-rate increases,

and the performance of network improves.

VI. CONCLUSION

In this paper we investigated a two-way MIMO relay

network where two transceivers are serviced for exchanging

their data by a multi-antenna relay node. First, the achievable

rate region is determined and then the complex beamforming

weights are designed with the aim of sum-rate maximization

under the total transmit power relay node constraint with

the SOS of CSI assumption. Using the MIMO relay causes

we benefit receive and transmit beamforming jointly, and so

the specified complex beamforming matrix is a general-rank

matrix. For solving the consequence non-convex optimization

problems, we used SDR technique and bisection method.

Simulation results revealed to us that increment in the number

of antennas in the relay node causes improvement in perfor-

mance, i.e. sum-rate maximization.
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