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Abstract—In a clutter-dominant target detection problem, an adaptive
detector prior to signal detection must either whiten or null the clutter.
The former approach requires the estimates of covariance matrix of
clutter while the latter only requires a proper set or estimate of the
parameters of clutter subspace model. In this paper, we investigate the
detection performance of a subspace-based detector and a sample covari-
ance matrix(SCM)- based detector presented in [1] and [2], respectively,
but for a mono-static radar system. Our simulation results show that
the subspace-based detector not only can attain the predetermined false
alarm probability (fully nulling clutter) but also offers better detection
performance as compared with its counterpart. In this case, the SCM-
based detector only offers better detection performance for detecting
targets with Doppler frequency resided in clutter region as compared
with that of subspace-based one.

Index Terms—Target detection, Clutter, False Alarm Regulation,
GLRT.

I. INTRODUCTION

There are two general target detection approaches in the presence
of a clutter-dominant scenario. In the sample covariance matrix -
based approach it is assumed that the clutter echo received in a
range cell is the results of a large sum of contributions from different
clutter scatterers, so it is asymptotically Gaussian with a specific
structure of covariance matrix. In the second one, subspace-based
approach, it is assumed received clutter echoes fallen within a specific
subspace. Hence, the former approach requires the estimates of
covariance matrix of clutter while the latter only requires a proper set
the parameters of clutter subspace model. Generally speaking, it is
preferable to null the clutter rather than whiten the clutter especially
when (1) the dimensionality of the clutter subspace is small with
respect to the number of pulses within a CPI(coherent processing
interval), (2) the target signal to be detected is not substantially
within the clutter subspace, and (3) in the nonhomogeneous clutter
environment which invalidates the assumptions for estimating the
clutter covariance matrix [1]- [6].

In distributed MIMO systems, we previously showed that geometry
diversity of the distributed MIMO helps improve moving target
detection since for a given target velocity, different transmit-receive
pairs produce different Doppler frequencies that are less likely to be
all small and reside in the clutter nulling region [1]. Based on this fact,
we showed that the proposed subspace-based detector outperforms the
one, which is based on a sample covariance matrix(SCM).

In this paper, we compare these two approaches when exploited for
moving target detection in a monostatic radar system. To do this,
we firstly compare the false alarm regulation of these approaches
in the presence of a temporal clutter with power spectral density
(PSD) of Gaussian to show the effectiveness of the subspace modeling
to handel clutter. In other words, our simulation results show that
subspace-based detector can attain the predetermined false alarm
probability which means that subspace modeling of clutter can handel
the clutter. In addition, in reality, it is probable to have range
heterogeneity, which invalidates the assumption to estimate the clutter
covariance matrix, so the degradation in detection performance of the
SCM-based detector is expected, but the subspace based detector can
not affected by this. All of these show the capability of the subspace-
based detector to be exploited instead of the SCM-based detector in
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practical situations.

The remainder of the paper is organized as follows. Section II is
devoted to the detection problem statement. In Section III, we intro-
duce two clutter models and then introduce two detectors working
with these clutter models. In Section IV, we provide a comparison
between two detectors we consider. Finally, conclusions are drawn
in Section V.

Notation : Throughout the paper, scalars are denoted by non-
boldface type, vectors by boldface lowercase letters, and matrices
by boldface uppercase letters. Superscripts (.)T, (.)* and (.)* de-
note transpose, complex conjugate and complex conjugate transpose,
respectively. The the modulus of z is denoted by |z|.

II. DETECTION PROBLEM STATEMENT

The problem of detecting a radar signal in the presence of receiver
noise and clutter interference signals can be posed in terms of the
following composite hypothesis testing problem

{ Ho:r=c+w,

Hi:r=as(fa) +c+w, M

where r denote a K x 1 vector including the samples of the
matched filter output within a CPI due to K transmitted pulses; ¢
denotes the clutter vector, w denotes the noise vector distributed as
CN(0,0°T) with unknown variance o, o is a complex unknown
parameter accounting for both channel propagation effects and target
backscattering, and s(fg) is the signal steering vector due to a
Doppler frequency f4, which is the Doppler shift due to the motion
of target, given by

s(f) =11, e*jQWdePRI’ - 6*j2W(K*1)dePRI}T )

where Tprr is the time corresponding to the pulse repetition inter-
val(PRI).

III. CLUTTER MODEL

In this section, we introduce two clutter models. The first is to
model clutter as a zero-mean complex Gaussian random process
with specific temporal covariance matrix (general clutter model). The
second is to model clutter with a known signature (clutter subspace
model).

A. General Clutter Model

Based on the fact that clutter echo received in a range cell is
the results of a large sum of contributions from different clutter
scatterers, it is asymptotically Gaussian. Such a model may apply to
the returns from the forest, grassland, or other homogeneous surfaces.
The clutter is also subject to internal motion such as wind. Thus,
the received clutter echoes are complex Gaussian, and the temporal
clutter fluctuations are slow compared with the observation interval
of K pulses. Hence, in this general case, we assume the clutter to be
zero-mean complex gaussian distributed with the following temporal
correlation [2]

E{cc"}=C' 3)

Then, the temporal correlation matrix of the received signal r can be
expressed as

C= E{rrH} =C 401 “4)

To proceed, it need to be described the choice of the clutter co-
variance matrix C’. The temporal correlation of the clutter can be



characterized by its Doppler power spectral density (PSD) taking the
form [7]

A 2)\2
SU) = rl 0 + g ) ©

where f is the Doppler frequency variable, A the wavelength, r the
ratio of dc power to ac power in the spectrum which depends on the
radar frequency and wind speed, p. the clutter power, and ¢, the
the root mean-square (RMS) of the clutter velocity. This relate to a
continues autocorrelation function(ACF) as follows [2]

$(1) =pee ™ T (X ©)

The correlation coefficients related to the K consecutive sample is
obtained by sampling the ACF at 7 = kTpgry for k =0,..., K — 1,
i.e., pc(k) = ¢(kTprr). Then clutter temporal correlation matrix is
then given as

pe(0)  pe(1) pe(K —1)
P GO A () : o
5 pe(1)
pe(K —1) pe(1) pe(0)

For the problem described above, the two-step generalized likelihood
ratio test (GLRT)is to reject Ho if [2]

IS(fd)}f(Aflrl2
s(fa)TC=1s(fa)

The threshold nsc s is selected such that the desired Py, requirement
is satisfied. Here, C is known as sample covariance matrix (SCM)
obtained as

Larr(r) = > nscm (8)
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R 1 7
C= EZrkrk )

k=1

To estimate SCM, here, it is assumed that a secondary data set
{rk}kK:f1 is available with the same covariance matrix as the vector
r and where such secondary data does not contain any useful signal.

B. Clutter Subspace Model

In this case, the clutter are assumed to lie in the subspaces which
is spanned by the columns of matrix H with a dimension of K x L,
defined as [1], [4]

H = [h(f1),....h(fr)]

*J'QTF(Kfl)fLTPRI]T and f; are

10)

where h(f;) = [1,e 92" iTPRI ¢
the Doppler frequencies in the low frequency region. Surface clutter
usually has a small velocity spread due to the motion of the clutter
scatterers, producing a small Doppler frequency spread for stationary
radars. So, the clutter can be expressed as ¢ = HB3 where 3
denotes the L x 1 complex and unknown coefficient vector associated
with the clutter signature. Note that, the columns of the matrix H
must span the clutter subspace and the number of such vectors is
determined by the Doppler spread of the clutter spectrum [1], [4],
[5], [6]. Alternatively, given an upper bound on the bandwidth of the
clutter spectrum, we can select f; uniformly spread across the clutter
bandwidth at frequencies of f; = (I — 1 — Q)Af. with I =1,...,Q,
where @ and A f, are two parameters that should be selected properly
in a practical situation to achieve a predetermined value for the false
alarm probability [1], [5], [6].

In this case, the GLR test, which is also uniformly most powerful
invariant (UMPI) test, can be expressed as [1]

’S(fd)HHﬁr
s(fd)HHI{Is(fd)> (rHHIfIr

where 7ns is a threshold determined according to a desired Pyq
requirement.

’ 2

Lorr,(r) = ( ) > ns (11)

IV. PERFORMANCE RESULTS

In this section, several simulated scenarios are provided to verify
the regulation of the false alarm rate and detection performance of
the subspace GLR(S-GLR)detector and that of sample-covariance
matrix GLR (SCM-GLR) one. In our simulation, the pulse repetition
frequency is 500 Hz, the carrier frequency is 1 GHz and the number
of pulses within a CPI is K = 12. For SCM-based GLR detector,
we use K; = 2K = 24 range training data. The received input
signal-to-noise ratio is also defined as

|of®

SNR; = —- (12)
o

2

To show the effectiveness of the subspace-based detector in removing
clutter, a simulation is arranged in which the received clutter over a
CPI is modeled as (5) with parameters 6, = 1.5m/s, r = 90 and
pe = 40dB. In this case, the effect of selecting Af. and @ on
the false alarm regulation of the proposed detector is analyzed in
Fig. 1. This figure represents the Py, versus frequency. The results
show that in order to perfectly cancel clutter and to reach false
alarm regulation, the Gaussian PSD of the simulated clutter should
be modeled as a number of sinusoids at the Doppler frequency shifts
of i = (I—-1- Q)Af. Hz with Af. = 8Hz, @ = 3 where
[ =1,...,Q. Also, the results with Af. = % with @ = 1, and
Af. = 8Hz with Q = 2 are all provided, which lead to Py, > 1072,
From the results presented in this section, we see the effectiveness of
the subspace clutter model with proper selecting of the clutter region
parameters, which able the subspace-based detector to achieve CFAR
property without requiring any training data. In practical situations, it
makes sense to consider a limited Doppler velocity extent(say clutter
Doppler region) for receiving Doppler component of possible clutter
echoes. Since the true Doppler component of the ground scatterers are
unknown in practice and can take any values within that of the clutter
Doppler region, it is logical to assume that we are faced with the worst
case condition of receiving clutter echoes and, hence, consider all of
the Doppler shifts of clutter Doppler region with selecting parameters
Af. and @Q properly. Like the selecting the order of MTI (Moving
Target Indicator) filter, a radar designer can alter the parameters of
the clutter region depending on the intended surveillance area.

In Fig. 2, we compare the detection performance of the S-GLR and
the SCM-GLR detectors in terms of ROC curves for SNR; = —3dB
and 2dB. It could be seen that the S-GLR detector provides better
detection performance than that of the SCM-GLR detector even in
homogenous situations. The results of Figs.1 and 2 demonstrate that
the S-GLR detector not only provides the CFAR property but also
outperforms the detection performance of the SCM-GLR detector. It
is worth to note that the S-GLR detector does not need range training
data.

To completeness, we compare the detection performance of the above
detector as a function of Doppler frequency. The results are shown
in Fig. 3 for Ps, = 1072 and SNR; = 2dB. It is seen that the
SCM-GLR detector provides better target detection compared to the
S-GLR detector only at the target Doppler frequencies resided in the
clutter region.
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Fig. 1. False alarm regulation of the UMPI detector versus frequency, and
Q and Af. as parameters.
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Fig. 2. Comparison of the S-GLR and the SCM-GLR detectors in terms of
ROC curves for SNR; = —3,2dB
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Fig. 3. Comparison of detection probability of the S-GLR and the SCM-
GLR detectors as a function of Doppler frequency for SNR; = 2dB and
Prq =1073.

In the case of nonhomogeneous situations, it is expected that the
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Fig. 4. Comparison of the S-GLR and the SCM-GLR detectors in terms of
ROC curves for SNR; = —3,2dB in the presence of one interfering target
in the training data with the same signal-to-noise ratio as that of desired target.

performance of the SCM-GLR detector degrades significantly since it
invalidates the assumption of estimates of the covariance matrix. To
show this, we consider a scenario in which one of the training range
cells include an interfering target with the same signal-to-noise ratio
as that of desired target. The results of this simulation is shown in Fig.
4. As expected, it is seen that the detection performance of the SCM-
GLR detector degraded significantly especially when SN R; = 2dB.
In contrast, the S-GLR detector performs like what presented in Fig.
2, since S-GLRT has no need for training signals.

V. CONCLUSIONS

In this paper, we investigated the capability of the subspace -
based detector to be exploited in practical situations. To show this,
we examine the subspace model of clutter, and show how to set
parameters of this model to handel clutter. In this case, it is seen that
the subspace detector not only well suited to handle clutter but also it
has a superior performance as compared with the sample-covariance
matrix(SCM)- based detector in nonhomogeneous situation. One
advantage of the SCM-based detector over the subspace detector is it
offers better detection performance for detecting targets with Doppler
frequency resided in clutter region. This is done at the cost of more
computational complexities since it requires to estimate and invert the
sample covariance matrix, but the subspace detector needs to compute
the projection matrix only once.
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