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Robust Discrete-time Linear Control of Heart Rate During Treadmill
Exercise

Clément Girard1, Asier Ibeas2, Ramon Vilanova2, Ali Esmaeili2

Abstract—This paper investigates the ability to control the
human heart rate during treadmill exercise which is an important
issue in the development of rehabilitation protocols after surgery
or weight loss programs and in the prevention of heart failure.
In this way, a nonlinear model describing the heart rate response
to treadmill exercise is used in this paper to design a PID-type
controller adjusting the treadmill speed in a way that the heart
rate tracks a reference input profile. The model parameters are
estimated individually to best describe the person exercising.
Afterwards, two extreme linear systems are defined from the
nonlinear model. These extreme linear systems are then used
to design a linear robust controller capable of providing an
adequate closed-loop response for all the linear systems contained
between the two extreme models. The so-designed controller is
finally discretized by using a ZOH in order to obtain a discrete-
time controller suitable to be implemented in practice. The
designed control system is tested on the original nonlinear model
by computer simulation to demonstrate the effectiveness of the
proposed method to achieve the required objective.

Index Terms—Heart-rate control, Nonlinear systems, PID,
robust controllers.

I. INTRODUCTION

Regular physical activity is beneficial for the overall health
of people. It improves heart capacity to send blood to muscles
due to their higher demand in oxygen and by this way reduces
the risk of heart diseases or cardiac failure. Exercise practice
was also proven to be beneficial for people recovering after
cardiac disease or surgery as well as for people involved in
weight loss programs, [1]. For these people, physical exercise
has to be carefully supervised by health professionals to
check that it does not present hazards and to adapt activity’s
intensity level according to patients health conditions. The
strong correlation between the heart rate and the intensity
of the exercise allows medical experts to supervise the good
practice of the activity thanks to the ease to monitor the heart
rate response. The knowledge of the cardiovascular system
response during exercise can thus improve training protocols
for recovery and weight loss programs by an individual adap-
tation of the process. In this way, a typical training exercise
consist in defining a time-varying profile for the heart rate
response profitable to patient cardiovascular recovery and in
adapting exercise intensity to track this profile. A large range
of activities can be performed during heart recovery programs,
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one of the most frequently employed being the treadmill
exercise because of its efficiency and ease of use.

Several studies have been carried out in order to model the
heart rate response during treadmill exercise, [2]- [6]. It con-
cluded in a nonlinear system depending both on the running
speed and on individual characteristics of the exerciser. Two
nonlinearities can be observed: the first one comes from a
nonproportional increase of the heart rate with the walking
speed increase while the second one appears during prolonged
exercise where the heart rate steady increases with a slope
depending on the walking speed maintained by the patient (i.e.
the heart rate increases despite treadmill speed is constant).
This last effect is referred to as drift phenomenon and increases
with the intensity of the exercise, [7]. Therefore, unlike linear
systems whose step response proportionally follows the input,
the response of this system is dependent on the intensity of
the input applied being, thus, nonlinear. Some articles describe
simple models of heart rate response during exercise but based
on short duration exercise which do not take into account
the drift phenomenon, [2]. A more workable model, however,
would require the description of the aforementioned nonlinear
effects. In this way, [3] and [4] model the heart rate response
during treadmill exercise as a Hammerstein system composed
of a static nonlinearity followed by a linear dynamical system.
Moreover, a fully nonlinear dynamical model was proposed in
[5] and takes into consideration the nonlinear particularities of
the system during prolonged exercise.

The model proposed in [5] is described as a state space
model with two state variables. It includes five parameters
depending on miscellaneous environmental and personal items
such as temperature and differ from one individual to another
in respect to his physical and health conditions. Therefore,
an individual evaluation of these parameters should be made
in order to best describe the evolution of the heart rate with
the walking speed of each person. The individualized model of
each patient is then used to design a controller able to regulate
the speed of the treadmill in order to make patient’s heart rate
accurately follow the reference profile.

When the system is modeled as a Hammerstein system, the
control strategy consists in cancelling the input nonlinearity by
applying its inverse and then control the remaning dynamical
system by using linear control approaches such as H∞, LQ or
model predictive control, [3], [4]. On the other hand, [5], [6]
and [8] propose the design and implementation of nonlinear
controllers based on the Lyapunov theory, whose starting point
is the original nonlinear system. The first approach faces the
modeling of the static nonlinearity and its inverse by using
suport vector regression (SVM) while the second one has to
deal with the generation of complex control laws due to the
system nonlinearities. The main purpose of this paper is to
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ease off the design of controllers by using a novel approach
that leads to simple but powerful control laws.

Initially, two extreme linear models are obtained from the
original nonlinear system. These linear models are then used to
generate a nominal linear system for which a robust controller
is afterwards designed. Therefore, the robust approach is used
to cope with the nonlinear behaviour of the actual system
when a linear controller is employed. Thus, we maintain
the simplicity of working with linear models to design the
controller but in a way that the prolonged excercise effects
can be taken into consideration. The controller is finally
discretized by using a zero-order hold (ZOH) in order to obtain
a controller suitable to be implemented in practice since most
of industrial controllers are currently implemented in discrete-
time. Some simulation examples will show the usefulness of
the proposed approach when the controller is applied to the
original nonlinear system.

II. PROBLEM FORMULATION

The first element we need to design a controller is an accu-
rate and rigorous model of the exerciser’s heart rate response
during treadmill exercise. The proposed starting model is the
nonlinear state space controlled system considered in [5]:

ẋ1(t) =−a1x1(t)+a2x2(t)+a2u2(t)
ẋ2(t) =−a3x2(t)+a4x1(t)ψ(x1(t))
ψ(x1(t)) = 1

1+exp(−(x1(t)−a5))

HR(t) = x1(t)+HR0
4

(1)

The input variable u(t) corresponds to the speed of the tread-
mill. The state variable x1(t) represents the heart rate variation
from the at-rest value and x2(t) represents the influence of
local peripheral effects (like temperature, hydratation or sweat)
on the heart rate. In this way, this model allows considering
heart rate fluctuations not only with the running speed but also
with environmental and physiological conditions. The variable
HR(t) is the actual heart rate of the exerciser given by the
model while HR0 is a constant representing the at-rest heart
rate value of this same person. By this formulation the state
space variable x1(t) is not directly the value of heart rate
deviation but the quarter of this. This fact does not change
substantially the model description but it has to be taken into
account in the system design.

Considering positive values for the model parameters ai, i=
1,2...5, it is easy to see that an increase in the input u(t) will
increase x1(t) which will in turn raise x2(t), fact that will
further increase x1(t). This aspect of the model reflects the
drift phenomenon observed in body’s response to exercise. It
has to be noticed that the input variable u(t) is not directly
the speed of the treadmill in this model but it is normalized
to 8 km/h so that u(t) = s(t)

8 were s(t) is the actual speed of
the treadmill in km/h. Therefore, u(t) will vary in the interval
[0,1] to define a speed value between 0 km/h and 8 km/h.
The speed of 8 km/h is defined as the maximal speed beyond
which the previous model is not suitable because of the non
linearity predominance.

The control problem is the design of a speed controller that
makes user’s heart rate follow a specific given profile. The

controller’s role is to regulate the treadmill speed in order
to change exercise intensity and, as a consequence, exerciser
heart rate. For this purpose, the controller takes as input, the
error signal between the reference profile and the current heart
rate of the user to generate as output a control value that is the
speed of the treadmill. Since the output of the model is taken
as y(t) = x1(t), this one represents the quarter of the patient
heart rate deviation. Therefore, the error value will be actually
taken as the difference between an input signal adapted to be
the quarter of the desired heart rate deviation and the output
signal y(t). The overall control loop can be seen in Fig. (1)1.

Figure 1. Block diagram of the controlled treadmill system.

The control method is based on a PID controller tuned
by classical tools. The main contribution of the paper relies
on the approach of manipulating the system model in a way
that allows using well-known and well-establised techniques
to cope with the design of a robust controller for this nonlinear
system instead of using advanced control techniques for the
original system (e.g. SVM or Lyapunov theory) that lead to
complex control laws. This viewpoint simplifies a lot the
design procedure along with the controller implementation
while obtaining adequate results. Thus, the simulation exam-
ples in Section IV will show the effectiveness of the proposed
approach.

An important issue remaining at this point is the deter-
mination of the model parameters. In previous analysis [5],
[6], model parameters (a1,a2,a3,a4,a5) were determined by
studies based on a panel of people. Each person had to walk
at a determined speed during a fixed period of time to study his
heart rate response from at-rest to a certain intensity level and
then during the recovery period after activity. By compiling
data of each person for several walking speeds, an estimation
of averaged model parameters for the complete panel can be
made (for instance, by using the methods of [9]). It thus allows
obtaining a model independent from the subject considered.
However, by studying heart rate response of various people to
a same fixed exercise it turns out that it can differ significantly
from person to person because of the age, sex and physical
condition of each one. This is why the procedure proposed in
this paper consists in the following steps:

1) Firstly, an individual estimation of the model parameters
is performed.

2) Secondly, two extreme linear models are generated for
the original individual nonlinear system.

3) A robust controller is designed with the aim of control-
ling the whole family of linear systems between the two
extreme ones.

1For the sake of simplicity the transfer function of the treadmill motor,
relating the output of the controller u′ with the actual speed u in Figure 1,
will be assumed to be unity.
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4) The controller is discretized by using a ZOH in order to
obtain a discrete-time controller.

5) The so-obtained controller is applied to the original
nonlinear system.

The individualized controller design procedure is introduced
in the following section.

III. CONTROLLER DESIGN

This Section contains how the model is manipulated in order
to obtain a nominal one suitable for controller design purposes
and the description of the controller structure.

A. Model Definition

Since the variation of the five ai parameters from one
individual to another can be consistent, a personal approach
has to be made. Thus, the starting point is the nonlinear
model given by equations (1) where the parameters ai are now
assumed to be known and individually adapted. The model
contains two nonlinearities. The first one comes from the term
u2(t) which can be overcome by considering a new function
w(t) = u2(t) so that the new input of the process will be w(t).
In this way the term a2u2(t) in (1) will be replaced by a2w(t)
and w(t) will be the control action to be designed. Therefore,
the actual input to the system is obtained from:

u =
√

max(0,w(t)) (2)

The other nonlinearity is the ψ(x1(t)) function which depends
on the state variable x1(t) in a nonlinear way. In order to avoid
this nonlinear dependence, the ψ function can be inset between
its two extreme values which are the limits of this function
when x1(t) tends respectively to zero (ψ1) and to infinity (ψ2):

lim
x1→0

ψ(x1) = ψ1 =
1

1+ exp(a5)
(3)

lim
x1→∞

ψ(x1) = ψ2 = 1 (4)

so that
ψ1 ≤ ψ(x1(t))< ψ2 (5)

In this way, the above values define the two extreme linear
systems given by Σ1 and Σ2:

Σ1 :

{
ẋ1(t) =−a1x1(t)+a2x2(t)+a2w(t)
ẋ2(t) =−a3x2(t)+a4x1(t)ψ1

(6)

and

Σ2 :

{
ẋ1(t) =−a1x1(t)+a2x2(t)+a2w(t)
ẋ2(t) =−a3x2(t)+a4x1(t)ψ2

(7)

while a general system in-between both is given by:

Σλ :

{
ẋ1(t) =−a1x1(t)+a2x2(t)+a2w(t)
ẋ2(t) =−a3x2(t)+a4x1(t)ψλ

(8)

with:
ψλ =

1
1+ exp(a5)

+
λ

1+ exp(−a5)
(9)

for λ ∈ [0,1]. The design procedure will choose the model
in the middle (i.e. for λ = 0.5) as nominal model while the

controller should be robust enough to cope with the whole
family. In this way, the controller design problem for the
nonlinear system is converted into designing a linear controller
able to achieve appropriate tracking and stability properties for
the whole family of linear systems defined by (8)-(9). Thus,
the controller will be designed for ψ1/2 =

ψ1+ψ2
2 = 2+exp(a5)

2+2exp(a5)
while the state space model taken for controller design pur-
poses is: {

ẋ1(t) =−a1x1(t)+a2x2(t)+a2w(t)
ẋ2(t) =−a3x2(t)+a4x1(t)

2+exp(a5)
2+2exp(a5)

(10)

which can be cast into the traditional state space representation
as: {

ẋ(t) = Ax(t)+Bw(t)
y(t) =Cx(t)+Dw(t)

(11)

where x(t) is the state vector, w(t) is the input variable and
y(t) the output variable. The A,B,C and D matrices are:

A=

(
−a1 a2

a4
2+exp(a5)

2+2exp(a5)
−a3

)
B=

(
a2
0

)
C =

(
1 0

)
D=

(
0
)

(12)
while the transfer function corresponding to this linear model
is given by H(s) = D+C(sI −A)−1B:

H(s) =
a2s+a2a3

s2 +(a1 +a3)s+a1a3 − a2a4(2+exp(a5))
2+2exp(a5)

(13)

In the next subsection a suitable controller for this model is
proposed in order to robustly stabilize the whole family (8)
what, in turn, will be able to adequately control the nonlinear
system as the simulation examples in Section IV will show.

B. Controller Structure

The aim of the controller is to make the heart rate follow the
predefined profile set up as reference. In the case of recovery
and training programs, the most frequent shape of heart rate
reference profile is a trapezium. In this way, during the first
part of the exercise, the heart rate will slowly increase from
its at-rest value to a maximal one determined according to
individual needs. This value is often established by a certain
percentage of the maximal heart rate of the individual. For
instance, people in rehabilitation after heart surgery will target
between 50% and 60% while people involved in weight loss
program will focus on 60% or 70% and athletes will be able
to achieve between 70% and 90% of their maximal heart rate.
The value thus defined will be maintained for a period of time
and during the last part of the exercise its intensity will slowly
decrease to make the heart rate progressively recover its at-
rest value. Therefore, the reference input can be regarded as
a ramp followed by a constant value and another ramp at the
end. In order to cancel the tracking error during the complete
exercise, the corrector has been chosen with a double integral
action.Then, the corrector will be a PII controller of the form:

K(s) =
W (s)
E(s)

= K0

(
1+ τs

τs

)2

(14)

where W (s) denotes the Laplace transform of the controller’s
output, w(t), while E(s) denotes the Laplace transform of
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the tracking error2. Moreover, the controller will then be
discretized by using the zero-order hold in order to obtain
a numerical controller corresponding to the control technique
applied in the actual system. The equation of the discrete-time
PII controller is of the form:

Kd(z−1) =
d0 +d1z−1 +d2z−2

b0 +b1z−1 +b2z−2 (15)

that yields the recurrence equation:

w(k) =
d0ε(k)+d1ε(k−1)+d2ε(k−2)−b1w(k−1)−b2w(k−2)

b0
(16)

were w(k) is the calculated control variable which represent
the square of the treadmill speed to apply.

Since the control system will act on the human body and,
especially, on his heart rate, the aspects of accuracy and
stability are of most importance in the closed-loop system.
The speed aspect is of less importance. Thus, a too high
speed of the system would increase the variations of the
control signal which control the speed of the treadmill. A
compromise has to be met in order to limit the control signal
deviation while keeping an accurate and robust system with a
satisfactory celerity. In order to tune the parameters τ and K0
of the continuous controller K(s), the phase margin (PM) and
the frequency at unity gain (ωu) of the open loop controlled
system will be progressively adjusted. The phase margin will
be chosen sufficiently high to reduce the oscillations on the
control variable but with an acceptable value for not slowing
down the system and augmenting the overshoot. The value
of ωu, on the other hand, will be chosen in way to give an
acceptable speed to the system, not too high to not involve
oscillations in the output and large deviations of the control
signal. The next Section IV will show the specific tuning of
the controller and the results when it is discretized and used
to control the original nonlinear system.

IV. SIMULATION EXAMPLES

This Section contains some numerical simulation examples
showing the tuning method and the results achieved by the
proposed controller. Particular values for the model, extracted
from [6], will be used to tune the controller and show some
examples of the attained results3:

a1 =
2.2
60

,a2 =
19.96

60
,a3 =

0.0831
60

,

a4 =
0.002526

60
, a5 = 8.32 (17)

Since these values are provided in [6] in minutes they have
been divided by 60 in order to obtain the corresponding values
in the units of the International System (seconds). The software
used is the powerful development environment Matlab.

The Fig. 2 shows the Bode diagram of both extreme system
ψ(x1) = ψ1 in green and ψ(x1) = ψ2 in blue. It can be

2We must bear in mind that the actual input is calculated from Eq. (2).
3These parameters could be obtained for a specific individual by using an

estimation procedure.
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Figure 2. Bode diagram of the linearized models with ψ = ψ1 (green),
ψ = ψ2 (blue) and ψ = ψ1/2 (red).

observed a small deviation of gain and phase values at low
frequency between the systems. This phenomenon comes from
the model nonlinearity and its intensity depends, as can be seen
in the figure, on the value of the function ψ(x1(t)). The Bode
diagram also reveals a transition frequency (this one to be
taken at −3dB lower the gain at low frequency of the system
with ψ(t) = ψ1/2 corresponding to the red curve in Fig. 2).
This cutting frequency of the process is measured as ωc =
0.037rad/s. From this value an estimation of the unity gain
frequency ωu of the future open loop controlled system can be
made about 5ωc < ωu < 10ωc (0.18rad/s < ωu < 0.37rad/s),
[10]. In order to obtain a sufficiently stable closed-loop system
for the whole family of models (8)-(9) without oscillations in
the output and a small overshoot, the phase margin will be
chosen high enough, ranging in 60◦ ≤ PM ≤ 80◦. The input
of the system takes the form of a typical reference profile that
could be applied during a training program. It will consist in
a 20 minutes exercise started by 4 minutes during which the
heart rate will linearly increase to reach 40 bpm above HR0.
This value will be maintained during 11 minutes and will then
be progressively decreased to recover the at-rest value.

A simulation sensitivity analysis is carried out to find the
best parameters of the controller. Thus, several values of ωu
and PM within the previously defined intervals will be taken
to design a panel of continuous-time controllers which will
be discretized by using a ZOH to generate the discrete-time
controller (15) and used to test the response of the controlled
system to the exercise outlined above. The sample time used
to discretize the controller is 0.15 s. This value has been
chosen for computer resources reasons, but also because of the
updating time of the output value. Indeed, if the human body
is a continuous system, the heart rate monitor only gives a new
value at each heart pulsation. Considering that the maximum
heart rate will be about 180 bpm, the output value is only
updated at most each 0.33 s. If we take a little less of the half
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Figure 3. Controller parameters influence on the heart rate response to
treadmill exercise. PM = 60◦ (green), PM = 70◦ (blue), PM = 80◦ (red).(Top)
heart rate deviation of the exerciser during treadmill exercise. (Bottom)
treadmill speed calculated by the numerical PII controller.
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Figure 4. Zoom on the controller parameters influence on the heart rate
response to treadmill exercise (Fig. 3). PM = 60◦ (green), PM = 70◦ (blue),
PM = 80◦ (red).

of this value in order to not lose information we have that the
sample time has been fixed for the controller discretization
at 0.15 s. The influence of both parameters on the controller
efficiency is shown in Figs. 3 and 4.

The values used in this figure are, for the phase margin,
PM = 60◦, PM = 70◦ and PM = 80◦ and for the unity gain
frequency, ωu = 0.05rad/s, ωu = 0.1rad/s, ωu = 0.3rad/s and
ωu = 0.5rad/s. It can be seen in Figure 4 that the increase of
ωu makes the system faster and reduces the overshoot but also
generates quick variations of the treadmill speed that could
jeopardize the exerciser. The increase of the phase margin
will, on the contrary, slow down the system and augment the

overshoot but allows to reduce the oscillations in the heart rate
and in the treadmill speed by smoothing the response, what
makes the exercise safer. By selecting the best compromise to
obtain a controller with a satisfying velocity and low output
oscillations, the values have been chosen as ωu = 0.2rad/s
and PM = 70◦. The values of the continuos-time controller
(14) satisfying these design criteria are:

K0 = 0.1074, τ = 0.0543 (18)

while the discrete-time controller (15) is defined by:

Kd(z) =
36.4375−70.8825z−1 +34.4719z−2

1−2z−1 + z−2 (19)

It can be observed in Fig. 3 that the heart rate does not totally
recover its at-rest value after the 20 minutes. This situation
reflects the fact that the heart is not controllable when it comes
to reducing its rate. Therefore, it will recover the at-rest value
according to the dynamics of the unforced system (1). This
figure also shows an undesired rise on the treadmill speed at
20 minutes. This defect comes from the sharp discontinuity of
the input value when the reference signal reaches the at-rest
value. It can be overcome by given a smoother input using a
low pass filter F(s) = 1

(1+10s)2 applied to the input (which is
discretized at 0.15 s to cope with the running period of the
discrete-time controller).

To show the efficiency and usefulness of the controller, it
has been tested with several inputs of different intensities.
These reference heart rate signals have been filtered by the
low pass filter F(s) to prove that it improves the activity safety
and system performances. The results of these simulations are
shown in Fig. 5 where the reference input and system output
are practically superimposed. This figure shows that the use
of a double integration in the controller allows canceling the
dynamic error during the tracking of the ramp signal. The
effect of the filter F(s) is also clearly noticed by giving an
output signal smoother and very close to the reference. It
should also be noted that the higher reference profile that
corresponds to an increase of 60 bpm of the exerciser heart
rate is only shown to prove the efficiency of the controller for
high value inputs. Indeed, the treadmill speed exceeds the 8
km/h threshold to reach this heart rate value which normally
is the speed limit of the model availability. However, 8 km/h
is not a precise value and it is possible that the model remain
valid for slightly higher speed.

Since the nonlinear model, even with an individual iden-
tification of the parameters, cannot exactly reproduce the
variations of the heart rate during an exercise, the designed
controller has to be able to ensure good performances even for
a heart rate response relatively distant from the model taken
into account. To verify this further robustness, the controller
can be tested on models with different values of parameters.
With a variation of 100% increasing or decreasing of the
parameter values from the initial model, the corrected system
using always the same numerical controller designed from the
nominal model remains stable and the response continues to
track the input appropriately what shows the validity of the
control approach. In order to illustrate these claims, Figure 6
shows the output of the controlled system for different exercise
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Figure 5. Controlled system response to inputs with different intensities.
(top) Heart rate deviation measured in the output of the nonlinear model
(blue) following the input reference signal (red). (bottom) Treadmill speed
evolution during the exercise.
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Figure 6. Controlled system response to inputs with different intensities and
a 100% of variation of model parameters. (top) Heart rate deviation measured
in the output of the non linear model (blue) following the input reference
signal (red). (bottom) Treadmill speed evolution during the exercise.

intensities with the previously designed controller (19) and an
increase of a 100% of the actual parameters of the model (17).

V. CONCLUSION

In this paper, a PID-type controller is proposed to regulate
a nonlinear model describing the heart rate response during
treadmill exercise. The nonlinearity produced by the drift
phenomenon depending on the walking speed is firstly inset
within its extremal values in order to define a family of linear
models covering the original nonlinear system. A linear model
located in the middle of these two extreme values is then
considered in order to design a robust PII controller. Moreover,
a simulation program describing the overall control loop is
implemented in order to heuristically tune the parameters of
the controller by performing a sensitivity analysis of its critical
parameters. Afterwards, a trade-off tuning balancing adequate

robustness and speed for the closed-loop is selected for the
controller. An input reproducing a typical heart rate reference
profile used in a recovery program is defined to test the
controller performances in an as realistic way as possible. The
controller thus obtained is discretized to define a numerical
controller whose recurrence equation can be implemented in
a computer-based controller.

The results obtained by simulation show that the controller
is efficient to control the nonlinear model. The reference
profile is properly followed and the treadmill speed does not
undergo sudden changes to ensure a gentle activity. The use
of a double integral action on the controller is efficient to
cancel the tracking error under ramp and step inputs. This
outcome confirms that this control method based on a PID-type
controller shows good performances and satisfying robustness.
In this way, an effective control is perfomed without needing
advanced control strategies nor complex control laws.

Since the model is only valid for treadmill speeds lower
than 8 km/h, it may be interesting to obtain a more general
one in order to design controllers for healthy people, who can
employ speeds in the range of 8-12 km/h to improve their
physical condition or for athletic training programs.
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