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Abstract—This paper presents a new optimal damping controller 
design based on fuzzy wavelet neural network (FWNN) to damp 
the multi-machine power system low frequency oscillations. The 
error between the desired system output and the output of 
control object is directly utilized to tune the network parameters. 
The orthogonal least square (OLS) algorithm is used to purify 
the wavelets for each rule and determine the number of fuzzy 
rules and network dimension. In this paper, Shuffled Frog 
Leaping Algorithm (SFLA) is proposed for learning of FWNN 
and to find the optimal values of the parameters of the FWNN 
damping controller. To illustrate the capability of the proposed 
approach, some numerical results are presented on a 2-area 4-
machine. To show the effectiveness and robustness of the 
designed controller, the case studies are tested under two 
conditions: applying a line-to-ground fault at a bus and applying 
a three phase fault at a bus. Furthermore, to make a comparison, 
a conventional damping controller is applied. The simulation 
results show the superiority and capability of the proposed 
optimal FWNN damping controller. 

Keywords- fuzzy wavelet neural network, shuffled frog leaping 
algorithm, low frequency oscillations, damping controller, PSS. 

I.  INTRODUCTION  
Low frequency electromechanical oscillations are 

inevitable characteristics of power systems. Due to increasing 
complexity of electric power systems, especially with the 
interconnection of these systems by weak tie-lines, 
spontaneous system oscillations present limitations on power 
transfer capability and affect operational system economics and 
security [1]. Power system stabilizers (PSSs) for generators are 
damping controllers and efficient tools for improving the 
stability of power systems through damping of low frequency 
modes.  Numerous works are done and published around the 
world on the design of damping controller for enhancing the 
power system low frequency oscillations [2]-[5]. Each of these 
techniques has their own advantages and disadvantages. 

In this paper, an alternative new damping controller design 
based on fuzzy wavelet neural network is proposed to damp the 
power system inter-area low frequency oscillations. The 
FWNN is used to construct a damping controller for generating 
a supplementary control signal to the excitation system on the 
base of target characteristic of the power system. In the 
proposed FWNN based controller, each fuzzy rule corresponds 

to one sub wavelet neural network (sub-WNN). The 
Orthogonal Least Square (OLS) algorithm is used to purify the 
wavelets for each rule and determine the number of fuzzy rules 
and network dimension. Furthermore, to avoid trial-and-error 
and time-consuming, a self-tuning process by applying 
Shuffled Frog Leaping Algorithm (SFLA) is used to find the 
optimal values of the controller parameters of translation, 
weights, and membership functions. To illustrate the 
effectiveness of the proposed approach, some numerical results 
are presented on a 2-area 4-machine. Also, the results obtained 
are compared with conventional damping controller designed 
by SFLA using the suggested approach in [5]. The main 
properties of the proposed approach are: this approach does not 
require real-time model identification; hence it can be easily 
implemented on a microcomputer. Also, the simulation results 
reveal that the proposed FWNN damping controller enhances 
system stability against different fault types and provides some 
advantages such as self-tuning of FWNN parameters and easy 
algorithm.  

The paper is organized as follow: to make a proper 
background, the basic concepts of FWNN and SFLA are 
briefly explained in Section II. The 2-area 4-machine system 
which used in the simulations studies is given in section III. In 
Section IV, the design procedures of the proposed FWNN 
damping controller and its learning algorithm are described. 
Simulation results are provided in Section V and finally some 
conclusions are concluded in Section VI. 

II. REVIEW OF FWNN AND SFLA 

A. Fuzzy Wavelet Neural Network Structure 
The basic concepts of FWNN method, originally presented 

by Daniel et al [6] which is briefly described in this section. 
The FWNN is a multi-layer network which integrates fuzzy 
model with wavelet neural networks.  For a multi-input-single-
output (MISO) with ],...,[ 1 qxxx   as input and y as output of 
the system,  a typical FWNN for approximating arbitrary 
nonlinear function y can be described by a set of fuzzy rules as 
follow : 
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where iR )1( ci  is the ith fuzzy rule and jx is the jth input 

variable of the system. iŷ calculates the output of local model 
for rule iR . iM and iT  determine the dilation parameters and 
total number of wavelets for the ith rule, respectively. 
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jt  denotes the translation value of 

corresponding wavelet k. Finally, j
iA  is the fuzzy set 

characterized by the following Gaussian type membership 
function and )( j

i
j xA is the grade of membership of jx  in i
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where i
jp 1  represents the center of membership function 

and i
jp 2 determine the width and the shape of membership 

function, respectively. Moreover, wavelets )()(
, xk
tM i

 are 

expressed by the tensor product of 1-D wavelet functions: 
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By applying fuzzy inference mechanism and let iŷ be the 
output of each sub-WNN, the whole output of FWNN for 
function )(xy is as follow:  
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the firing strength of the ith rule for current input and satisfies 
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i . Also, i̂  determines the contribution 

degree of the output of the wavelet based model with resolution 
level, iM  .  

A good initialization of wavelet neural networks leads to 
fast convergence. Numbers of methods are implemented for 
initializing wavelets, such as Orthogonal Least Square (OLS) 
procedure and clustering method [7]. In this paper the OLS 
algorithm is used to select important wavelets and to determine 
the number of fuzzy rules and network dimension. More details 
about construction of FWNN and network parameter 
initialization can be found in [7]. The structure of applied 
FWNN is shown in Fig.1.  

 

Figure 1.  Structure of FWNN [6]. 

Furthermore, it is important to adjust the required network 
parameters in the design of dynamic systems. In order to avoid 
trial-and-error, a self-tuning process is suggested by employing 
the SFLA to determine significant parameters of FWNN based 
controller such as dilation, translation, weights, and 
membership functions. In other words, during the learning 
process, these network parameters are optimized using SFLA. 
To make a proper background, the concept of SFLA is given in 
the next subsection.  

B. SFLA Overview 
The SFLA is a meta-heuristic cooperative stochastic 

optimization algorithm which is drawn from natural biological 
evolution and the social behavior of a group of frogs [8]. The 
SFLA begins with an initial population of n  frogs 
( },,,{ 21 nXXXP  ) which are created randomly within the 
possible search space. For the optimization problems with d 
variables (d-dimensional problems), the position of ith frog    in 
the search space is represented as 1 2[ , , , ]Ti i i idX x x x  . 
Afterward, to evaluate the frog’s position, a fitness function is 
defined. Then the performance of each frog is computed based 
on its position. Then, frogs are sorted in a descending order 
regarding to their fitness. The frog with the global best fitness 
is introduced as gX . The entire group can be separated into m 
memeplexes, each of which consisting of q frogs, which 
satisfy qmn  .  The strategy of division is as follows: the 
first frog goes to the first memeplex, the second frog goes to 
the second memeplex, mth frog goes to the mth memeplex, and (m 
+1)th frog goes back to the first memeplex, etc. Within each 
memeplex, the frogs with the best and the worst fitness are 
identified as bX  and wX , respectively.  Within each 
memeplex, the position of the ith frog )( iD is adjusted 
according to the difference between the frog with the worst 



fitness )( wX and the frog with the best fitness )( bX  as shown in 
(5), where rand ()  is a random number in the range of [0,1]. 
During memeplex evolution, the worst frog wX  leaps toward 
the best frog bX . According to the original frog leaping rule, 
the position of the worst frog is updated as follow: 

)(())(D changePosition i wb XXrand            (5) 

)(,)( maxDDDXnewX ww                     (6) 

where maxD  is the maximum allowed change of frog’s 
position in a single jump. If a frog with a better fitness value is 
produced in this process, it replaces the worst frog, otherwise, 
the calculation in (5) and (6) are repeated with respect to the 
global best frog Xg (i.e. Xg replaces Xb). If no improvement 
becomes possible in this case, then a new frog is randomly 
generated to replace the worst frog. The evolution process will 
continue for a specific number of iterations. 

III. CASE STUDIE 
A Single line diagram of 2-area-4-machine power system is 

shown in Fig. 2. The sub-transient model for the generators, 
and the IEEE-type DC1 and DC2 excitation systems are used 
for machines 1 and 4, respectively. Moreover, the IEEE-type 
ST3 compound source rectifier exciter model is used for 
machine 2 and the first-order simplified model for the 
excitation systems is used for machine 3. One damping 
controller is going to be designed for this system and placed on 
machines 2. Details of the system data are given in [9].  

 

 
Figure 2.  A 2-area power system. 

IV. FWNN DAMPING CONTROLLER 
The FWNN structure and its learning algorithm are used in 

designing of damping controller to damp the power system low 
frequency oscillations by generating a supplementary control 
signal to the excitation system. Following, the architecture of 
proposed FWNN damping controller and its optimization 
method based on SFLA are described. 

A. Architecture of the proposed FWNN controller 
The structure of control system is given in Fig. 3. As can be 

seen, FWNN is utilized as a controller which has one input and 
one output. Let )(te defined as follow: 

)()()( tytrte                                   (7) 

where )(tr  and )(ty are desired output and the output of 
control system, respectively.  In the proposed control strategy, 
neural control system synthesis is performed in the closed-loop 
control system and )(te  is used for tuning network parameters 
to provide appropriate control input. By minimizing a quadratic 
measure of the error between desired system output and the 
output of control object, i.e. )(te , the design problem can be 
characterized by the SFLA formulation. On the other hand, the 
SFLA is used to correct the network parameters for adjusting 
of FWNN controller. 

 
Figure 3.  Structure of a control system. 

By using above control strategy, the designing FWNN 
damping controller is equivalent to determination of the 
FWNN parameters. The proposed FWNN damping controller 
scheme is shown in Fig. 4.  

In the proposed FWNN damping controller, the stabilizing 
signal is calculated by FWNN using the generator speed 
deviation )(  and acceleration )(  as the input signals to 
the network during each sampling period. However in practice, 
only shaft speed deviation is readily available. Thus, the 
acceleration signal can be computed from the speed signals 
measured at two successive sampling instants as follows: 

T
TzzTzT ))1(()()( 


                   (8) 

Where T is the sampling period and z is the sampling count. 
In this work the sampling period is chosen as 10 ms. According 
to Fig. 4, the FWNN output which is du  is defined so that 
error between refV  and tV  is minimized. To calculate the 

desired du , the FWNN parameters including dilation, 
translation, weights, and membership functions should be set 
so that the error )(te is minimized. In this work, to obtain the 
FWNN parameters the SFL algorithm is used. In this case, 
finding the FWNN parameters is considered as an optimization 
problem and the quadratic measure of )(te  is considered as the 
objective function. In the learning step, the FWNN controller 
parameters are calculated by minimizing a fitness function 
which is used the difference between the desired and real 
generator terminal voltage as follow: 
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where L is number of network training data. According to Fig. 
4, the generator output voltage is measured in each iteration 
and will be given to the SFLA optimizer after being compared 
to the reference voltage. 
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Figure 4.  The proposed FWNN damping controller scheme 
 

Then the solution vector is obtained by SFLA by 
minimizing the fitness function which gives the FWNN 
controller parameters. By using the obtained parameters, the 
network output ( du ) is calculated and applied to the exciter 
followed by calculating the new output voltage. The procedure 
continues until a termination criterion is met. The termination 
criterion could be the number of iterations, or when a solution 
of minimal fitness is found. 

B. The FWNN Optimization Method 

Equations (2)-(4) show that the free parameters to be 

trained in FWNN controller are i
jp 1 , i

jp 2 , kt  and 
iMw  

where , ci ,...,1 , qj ,...,1 . Our goal is to design the FWNN 
basis function expansion such that the error between refV and 

tV is minimized. Therefore SFLA is applied for tuning 
parameters of FWNN by optimizing the following objective or 
cost function. 
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Where fE is the fitness of fth frog. Suppose that there are N 

samples ))(,...),2(),1(( sxxx  for Ns ,...,2,1 , over a time 
interval from 0 to st which is the simulation time. According to 
(1)-(4), the FWNN output for fth frog associated with sample s, 
can be written as follows: 

 



 















































 














































 



c

i

q

j
fi

j

fi
jj

q

j
fi

j

fi
jjc

i

f
i

FWN
f

p

psx

p

psx
y

sxy

1 1

2

)(,
2

)(,
1

1

2

)(,
2

)(,
1

1

)(

)(

))((
exp

))((
expˆ

))((ˆ
         (11) 

and 

)2(2ˆ
,)(

1

2

1

)()(

,

k
jj

Mf
j

q

j

MT

k

f
M

f
i txwy i

ii

kti
 


           (12) 

In the SFLA, each population is a solution to the problem 
which determines the parameters of FWNN. Therefore, the fth 
frog is represented as: 
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In (13), the superscript T denotes the vector transpose 
operation. Thus, the all free design parameters that to be 
updated by SFLA in FWNN based controller are as follows: 
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As can be seen, the total number of parameters to be 

determined is )(2
1

cTq
c

i
i 



. In SFLA, during each 

generation, the frogs are evaluated with the objective function 
defined in (10).  Then the best frogs are chosen. In the current 
problem, the best frog is the one that has minimum fitness. 
After applying the SFLA, the best frog of the final iteration is 
the solution. Summarized the whole proposed approach for 
constructing FWNN damping controller is illustrated in Fig. 5. 

V. SIMULATION STUDIES 
To provide a reasonable dynamic performance for the 

considered multi-machine power systems, damping controllers 
are designed using the FWNN based controller. The results 
obtained by the proposed method are compared with 
conventional damping controller designed by SFLA using the 
suggested approach in [5]. At first, according to Fig. 5, 
initializing of the network is performed and the optimal 
number of fuzzy rules and the optimal number of wavelets in 
each sub-WNN is determined using OLS algorithm. For this, a 
performance index as (15) is considered for the OLS algorithm 
and some experiments are performed using the proposed 
FWNN damping controller.  

 dttJ 22                                  (15) 
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Figure 5.  General principles of FWNN damping controller design 

By applying OLS algorithm, three fuzzy rules with three 
selected wavelets are represented for constructing the FWNN 
controller. In the learning step, the FWNN parameters are 
calculated by minimizing the fitness function (10) using the 
difference between the desired and real generator terminal 
voltage. 

According to Fig. 4, the generator output voltage is 
measured in each iteration and will be given to the SFLA 
optimizer after being compared to the reference voltage. The 
first step to implement the SFLA is generating the initial 
population (N frogs) where N is considered to be 300.  The 
number of memeplex is considered to be 10 and the number of 
evaluation for local search is set to 20. Also Dmax is chosen as 
inf. Then the solution vector is obtained by SFLA by 
minimizing the fitness function defined in (10) which gives the 
FWNN controller parameters defined in (14). By using the 
obtained parameters, the network output ( du ) is calculated and 
applied to the exciter followed by calculating the new output 
voltage. The procedure continues until a termination criterion is 
met. In this paper, the number of iteration is set to be 5000.  

When the FWNN has been trained, it will yield the desired 
FWNN damping controller parameters. After applying the 
SFLA with 5000 iterations, the best frog corresponding to the 
smallest fitness value at each iteration is recorded and averaged 
over 10 independent runs. To have a better clarity, the 

convergence characteristic in finding the best values of FWNN 
parameters is given in Fig. 6. Also the obtained FWNN 
membership function parameters are shown in Table I. For 
brevity, other parameters of FWNN are not presented here. 
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Figure 6.  Convergence characteristic of SFLA in finding the best values of 
FWNN parameters. 

TABLE I.  THE FWNN MEMBERSHIP FUNCTION PARAMETERS 

1
1A 0875.1,3564.0 1

12
1

11  PP 1
2A 1208.1,6758.0 1

22
1
21  PP

2
1A 6710.0,4574.1 2

12
2

11  PP 2
2A 6574.0,9087.0 2

22
2

21  PP
3
1A 8656.1,2074.0 3

12
3

11  PP 3
2A 4922.1,9984.0 3

22
3
21  PP

 

The designed FWNN damping controller and those 
obtained by SFLA are placed in the case study (Fig. 2). To 
indicate the effectiveness of the proposed FWNN damping 
controller for improving the stability of the test system, a time- 
domain analysis is performed and its performance is 
investigated under different fault type. 

In first case, a line-to-ground fault is applied in one of the 
tie lines at bus 3. The fault cleared after 70.0 ms. The voltage 
magnitude at the faulted bus is shown in Fig. 7. Also, Figs. 8 
and 9 show the machine angles, δ with respect to a particular 
machine (machine 1) as a function of time for the above fault. 
Furthermore, to show the effectiveness of the designed 
damping controller under more severe condition, a three phase 
fault is applied in one of the tie lines at bus 3. The fault cleared 
after 70.0 ms. The voltage magnitude at the faulted bus is 
shown in Fig. 10. Also, Figs. 11 and 12 show the machine 
angles, δ with respect to a particular machine (machine 1) as a 
function of time for the above fault. Figs 7-12 show the FWNN 
damping controller improve the transient response 
characteristics and has a better performance in terms of 
overshoot, settling time and rise time compared to conventional 
damping controller designed by SFLA. 
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Figure 7.   Voltage response of the system to a line-to-ground fault at bus 3. 
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Figure 8.  The response of generator 3 to a line-to-ground fault. 
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Figure 9.  The response of generator 4 to a line-to-ground fault. 
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Figure 10.  The response of the system to a three-phase fault at bus 3. 
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Figure 11.  The response of generator 3 to a three-phase fault  
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Figure 12.  The response of generator 4 to a three-phase fault. 



VI. CONCLUSION 
In this paper a new control system incorporating the FWNN 

based controller is developed for damping multi-machine 
power system low frequency oscillations. The FWNN is used 
to construct a damping controller for generating a 
supplementary control signal to the excitation system on the 
base of target characteristic of the power system. Also, an 
efficient Shuffled Frog Leaping Algorithm (SFLA) is proposed 
for the learning of FWNN and to find optimal values of the 
parameters of FWNN based controller. The performance of 
designed controllers is tested on a 2-area 4-machine power 
system.  The robustness and effectiveness of the proposed 
FWNN damping controllers are verified under different 
disturbances. It is shown that the FWNN damping controller 
damps satisfactorily low frequency oscillations of system. 
Also, conventional damping controllers are designed for 
comparison. The simulation results show the superiority and 
capability of FWNN damping controllers in comparison with 
the designed conventional by SFLA, in improving the stability 
of the system.  
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