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Abstract—For multi-agent systems (MASs), event-triggered 

strategies typically require less control task execution and 

information transmission in achieving a collective behaviour 

compared to the time-triggered control schemes. This paper 

investigates exponential event-based consensus in directed 

topologies for MASs with general linear dynamic agents. The 

proposed control scheme involves a piecewise continuous event-

based control law and an event-based data transmission strategy 

for each individual agent which are developed based on a co-

design procedure. Necessary triggering instants in the agents are 

determined by local triggering mechanisms (ETMs) based on the 

violation of well-designed triggering-conditions. To avoid 

continuous time communication between agents, a time-

dependent ETM is proposed. Then, analytical discussions on 

Zeno behaviour exclusion are given for the proposed ETM. It is 

proved that the proposed control schemes guarantees exponential 

consensus achievement meanwhile decreases both control input 

updates and data broadcasts by the agents. As a result, such 

control scheme facilitates more energy saving and extends the 

lifespan of agent actuators in addition to decreasing the 

communication costs. Illustrative simulations are given to 

support the effectiveness of the proposed method.  

Keywords— Event-triggered control, Multi-Agent systems, 

Consensus problem, Strongly connected graph. 

I.  INTRODUCTION 

In the past decade, collective behavior of multi-agent 

systems have received an increasing attention within the 

control engineering community due to its broad application in 

many areas including cooperative control of unmanned air 

vehicles, autonomous underwater vehicles [1], clock 

synchronization [2], air traffic control [3], clustering of 

satellites, sensor networks [4] and so on. As a basic problem, 

consensus problem of MASs concerns with developing 

distributed control schemes that enables a group of dynamic 

agents connected through a communication network to reach 

an agreement on certain quantities of interest [4, 5]. 

In practice, each autonomous agent like a mobile robot is 

often equipped with small digital micro-processor, onboard 

communication module, and actuation module which usually 

have limited energy resources, communication resources and 

computing capabilities to perform the required functions. 

These factors motivate researchers to investigate event-

triggered control schemes [6] which typically requires less 

control task execution and data broadcasting in achieving a 

certain level of performance compared to the time-scheduled 

control schemes. Event-triggered strategies have been recently 

extended to the consensus of integrator agents in [7-12]. The 

authors in [7] proposed an event-triggered control law to 

update local controllers at some triggering instants. However, 

a continuous monitoring of the states of the neighboring 

agents was required in [7].  To relax this requirement, [8-11] 

introduced various ETMs in which continuous monitoring of 

the neighbour states was no longer needed. More recently, 13-

19] have extended the event-triggered consensus for MASs 

with general linear agents. In [13] and [16-18], the interaction 

topology of the agents were supposed to be undirected for the 

aim of easy analysis since the Laplacian matrix is symmetric; 

while, the information flow may be directed in real-world 

applications. The consensus problem in a directed interaction 

topology is more challenging as the stability analysis would be 

more complicated. The event-triggered consensus problem in 

directed topologies were investigated in [14, 15] and [19]. The 

authors in [14] addressed an event-based consensus controller 

in term of linear matrix inequalities (LMIs); however, the 

LMIs required explicitly Laplacian matrix L. Moreover, [15] 

gave sufficient conditions for convergence to a ball centered at 

the consensus point. However, each agent had to broadcast its 

control input signals in addition to its sampled-states at the 

triggering instants which could increase the communication 

loads. In addition, [14, 15], and [19] proposed state-dependent 

triggering conditions which may be highly frequent when the 

number of agents is large. To overcome this limitation we 

consider the time-dependent event threshold function, for 

event-based consensus in directed communication networks.. 

This paper investigates distributed event-triggered 

consensus control problem of linear MASs in directed 

topologies. The proposed approach concurrently focuses on 

decreasing control executions and reducing data broadcasts by 

the agents while guarantees exponential convergence to 

consensus. A co-design procedure is provided to determine 

parameters of distributed consensus controllers and the local 

time-dependant ETMs, simultaneously. Sufficient conditions 

ensuring exponential consensus achievement is derived and it 

is proved that the proposed event-based control scheme will 

not exhibit Zeno behavior. Following the proposed structure, 
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each agent broadcasts data to neighbors just at its own trigger 

instants not at the neighbors trigger instants. Such approach 

makes a great decrease in the required communication 

bandwidth and also facilitate more energy saving. 
An outline of this paper is as follows. Some preliminaries 

are given in Section II. The proposed event-triggered 
framework is discussed in Section III. Numerical simulation 
results are given in Section IV. Finally, Section V presents a 
summary of conclusions. 

 

II. PRELINIARIES 

A. Algebraic graph theory 

Algebraic graph theory [20] is often used in the study of 

collective behaviour of MASs to describe communication 

between agents.  
Consider a directed graph G  consisting a set of N nodes 

𝒱 =  𝜐𝑖 𝑖∈𝒩={1,2,..,𝑁} , a set of directed edges ℇ ⊆ 𝒱 × 𝒱. An 

edge in the graph denoted by  𝜐𝑗 , 𝜐𝑖  originating at node 𝜐𝑖  and 

ending at node 𝜐𝑗 . 𝒜(𝐺) = [𝑎𝑖𝑗 ]𝜖ℝ𝑵×𝑵 represents the 

adjacency matrix  where 𝑎𝑖𝑗 = 1 if  𝜐𝑗 , 𝜐𝑖 ϵℇ and 𝑎𝑖𝑗 = 0, 

otherwise. A directed path from node υ1 to υr  is a finite 
ordered sequence of edges,  υk+1 , υk , 𝑘 = 1,2, … , 𝑟 − 1 such 
that consecutive nodes are adjacent. The set of in-neighbours of 

node 𝜐𝑖  is denoted by 𝑁𝑖 = {𝜐𝑗 ∈ 𝒱 ∶  𝜐𝑖 , 𝜐𝑗  ϵℇ  , 𝑗 ≠ 𝑖}. A 

directed graph is strongly connected if and only if there exists a 
directed path between every pair of distinct vertices. A directed 

graph is called balanced if  𝑎𝑖𝑗
𝑁
𝑖=1 =  𝑎𝑗𝑖

𝑁
𝑖=1  for all 𝑖 ∈ 𝒩. 

The 𝐿𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛 of 𝐺 is defined as L = [𝑙𝑖𝑗 ]𝜖ℝ𝑵×𝑵, 𝑙𝑖𝑗 =

−𝑎𝑖𝑗  , 𝑖 ≠ 𝑗 and 𝑙𝑖𝑖 =  𝑎𝑖𝑚
𝑁
𝑚=1  for 𝑖 ∈ 𝒩.  By definition, 

every row sum of 𝐿 is zero. Throughout this paper, we assume 
the directed graph 𝐺 is strongly connected and balanced. 

Lemma [21].  Suppose that directed graph 𝐺 is strongly 
connected and balanced. Then, the Laplacian matrix 𝐿 have 
both zero row sums and zero column sums. Moreover, zero is 
an eigenvalue of 𝐿 and the corresponding eigenvector is the 

vector of ones, 1𝑁𝜖ℝ𝑁×1, i.e. 1𝑁
𝑇𝐿 = 0𝑇 ,    𝐿𝑇1𝑁 = 0.  In 

addition, 𝐿 + 𝐿𝑇  is a positive semi-definite matrix with zero 
being its simple eigenvalue. Furthermore, since 𝐿 + 𝐿𝑇  is 
symmetric and (𝐿 + 𝐿𝑇)1𝑁 = 0, by Courant-Fischer minmax 

theorem one has that min𝑥≠0𝑥⊥𝟏

𝑥𝑇(𝐿+𝐿𝑇)𝑥

𝑥𝑇𝑥
= 𝜆2 𝐿 + 𝐿𝑇 , where 

𝜆2 𝐿 + 𝐿𝑇 > 0 is the second smallest eigenvalues of 𝐿 + 𝐿𝑇 . 

Notations. ∥ . ∥ denotes the Euclidean norm for vectors and 
the induced 2-norm for matrices, respectively.  𝐴⨂𝐵 denotes 
the Kronecker product of matrix A and B. 

 

B. Problem formulation  

Consider a network of N agents which communicate over a 

directed graph 𝐺. The dynamic model of agent 𝑖 ∈ 𝒩 is 

described by (1) where 𝑥𝑖(𝑡) ∈ ℝ𝑛  and  𝑢𝑖(𝑡) ∈ ℝ𝑚  are the 

state and the control input of agent I, respectively. 

 𝑥 𝑖 𝑡 = 𝐴𝑥𝑖 𝑡 + 𝐵𝑢𝑖 𝑡                                                   (1) 

The objective is to introduce an event-triggered consensus 

control scheme such that enables linear MAS (1) to achieve 

consensus exponentially for any initial state 𝑥 0 𝜖ℝ𝑛𝑁 . To 

solve the consensus problem of MAS (1) in an event-based 

manner, a local ETM for each agent i monitors the state vector 

of this agent to generate a sequence of triggering time instants  

{𝑡𝑟 
𝑖 }𝑟=1,2,… using a prescribed trigging condition. Let 𝑡𝑟 

𝑖  

denotes the triggering instant of 𝑟𝑡ℎ  event in agent i .The next 

trigger instant 𝑡𝑟+1 
𝑖 for agent i is determined by the given ETM 

in (2) whenever the measurement error 𝑒𝑖 𝑡 = 𝑥𝑖 𝑡𝑟 
𝑖  − 𝑥𝑖 𝑡  

exceeds a given threshold function 𝑓𝑖 𝑡 = 𝑟𝑖𝑒
−𝜃𝑖𝑡  with 𝑟𝑖 > 0 

and 0 < 𝜃𝑖 < 1. 

 𝑡𝑟+1
𝑖 = 𝑡𝑟

𝑖 + 𝑖𝑛𝑓  𝑡: ∥ 𝑒𝑖 𝑡 ∥2> 𝑓𝑖(. )                             (2) 

Consider consensus error 𝑞𝑖𝑗  𝑡 = 𝑥𝑖 𝑡 − 𝑥𝑗  𝑡 . Then, 

vector 𝑞𝑖𝑗  𝑡𝑟 = 𝑥𝑖 𝑡𝑟
𝑖  − 𝑥𝑗  𝑡

𝑟 ′  𝑡− 
𝑗

  denotes the value of the 

consensus error at the triggering instants during the time 

interval [𝑡𝑟+1
𝑖 , 𝑡𝑟

𝑖 ). 𝑡
𝑟 ′ (𝑡−)

𝑗
= 𝑚𝑎𝑥  𝑡∗ ∶    𝑡∗ ∈ {𝑡

𝑟 ′
𝑗
   ,   𝑡∗ < 𝑡  } 

represents the last triggering instant in agent j before time 𝑡.  

The event-based control law is as follow 

 𝑢𝑖 𝑡 = −α𝐾  𝑞𝑖𝑗  𝑡𝑟 𝑗 ∈𝑁𝑖
,               ∀ 𝑡 ∈ [𝑡𝑟

𝑖 , 𝑡𝑟+1
𝑖 )           (3) 

In (3), matrix 𝐾 ∈ ℝm×n  and positive scalar α denote the 

consensus controller gain and coupling strength for agent i, 

respectively. The control input (3) is held constant till the next 

triggerimg instant in a ZOH manner. Based on (3), the control 

signal 𝑢𝑖 𝑡  is updated at the trigger instants {𝑡𝑟
𝑖 }𝑟=1,2,… in 

addition to whenever an event is triggered in one of the 

neighbouring agents i.e. at {𝑡
𝑟 ′
𝑗∈𝑁𝑖 }𝑟 ′ =1,2,…. 

The main purpose of this paper is to find the threshold 

function 𝑓𝑖(. ) for 𝑖 ∈ 𝒩 and consensus controller parameters 

i.e. controller gain 𝐾 and coupling strength α in a co-design 

manner to solve the consensus problem for MAS (1). In 

addition, it is desirable that each agent broadcasts data to its 

neighbors just at its own triggering instants to facilitate a 

reduction in communication costs. Specially, the design 

methodology should let us to implement local ETM (2) and the 

event-based control law (3) in a distributed manner for each 

agent.  

  

III. MAIN RESULTS 

A. Exponential Event-based Consensus  

From (1) and (3), the dynamic of agent i during the time 

interval [𝑡𝑟
𝑖 , 𝑡𝑟+1

𝑖 )  becomes  

𝑥 𝑖 𝑡 = 𝐴𝑥𝑖 𝑡 − α𝐵𝐾  [𝑥𝑖 𝑡𝑟
𝑖  − 𝑥𝑗  𝑡

𝑟 ′  𝑡− 
𝑗

 ]𝑗 ∈𝑁𝑖
       (4) 

Let 𝑥 = [𝑥1
T , … , 𝑥N

T]𝑇  and 𝑒 = [𝑒1
T , … , 𝑒N

T]𝑇 . Then, the 

closed loop system model is as follow 

 𝑥  𝑡 = (𝐼𝑁⨂𝐴 −  α𝐿⨂𝐵𝐾)𝑥 𝑡 −  α𝐿⨂𝐵𝐾 𝑒 𝑡              (5) 



Assumption 1. The communication topology is a strongly 

connected and balanced directed graph. 

Let 𝑧𝑖(𝑡) = 𝑥𝑖 𝑡 −
1

𝑁
 𝑥𝑘 𝑡 

𝑁
𝑘=1  denotes the disagreement 

vector for agent i. Then, we have that z 𝑡 =  Λ⨂𝐼𝑛  𝑥 𝑡  

where Λ = 𝐼𝑁 −
1

𝑁
1𝑁1𝑁

𝑇  with 1𝑁 = [1  1  … 1]𝑇 . Thereby, the 

disagreement vector dynamic is given by (6) where 𝜀 𝑡 =
 Λ⨂𝐼𝑛 𝑒 𝑡 . 

𝑧  𝑡 =  𝐼𝑁⨂𝐴 −  α𝐿⨂𝐵𝐾 𝑧 𝑡 −  α𝐿⨂𝐵𝐾 𝜀 𝑡            (6) 

The matrix Λ has a unique zero eigenvalue with 1𝑁  as its 

corresponding right eigenvector. Thereby, using z 𝑡 =
 Λ⨂𝐼𝑛 𝑥 𝑡  one has that 𝑥 𝑡 ∈ 𝑠𝑝𝑎𝑛{1𝑁} if z 𝑡 = 0𝑛𝑁 .  

Thereby, the exponential consensus problem of the closed 

loop MAS (5) is transformed into the exponential stability 

problem for the disagreement dynamic (6).  

Now, we consider the following Lyapunov function 

candidate where 𝑃 is a positive definite. 

V t = 𝑧T(𝐼𝑁⨂𝑃)𝑧                                                                       (7) 

Let K = BTP. Calculating the time derivative of V t  along 

the trajectory (6) yields 

   𝑉  𝑡 = 2𝑧𝑇 𝐼𝑁⨂𝑃 𝑧                                                                                        
        = 2𝑧𝑇 𝐼𝑁⨂𝑃   𝐼𝑁⨂𝐴 −  𝛼𝐿⨂𝐵𝐾 𝑧 −  𝛼𝐿⨂𝐵𝐾 𝜀          
        = 2𝑧𝑇 𝐼𝑁⨂𝑃𝐴 − 𝛼𝐿⨂𝑃𝐵𝐾 𝑧 − 2𝑧𝑇  𝛼𝐿⨂𝑃𝐵𝐾 𝜀  
        = 𝑧𝑇 𝐼𝑁⨂ 𝑃𝐴 + 𝐴𝑇𝑃 − 𝛼 𝐿 + 𝐿𝑇 ⨂𝑃𝐵𝐵𝑇𝑃 𝑧 
                                                          −2𝑧𝑇 𝐿⨂𝛼𝑃𝐵𝐵𝑇𝑃 𝜀              (8) 

It can be checked that 𝑧𝑇 1𝑁⨂𝑃𝐵 = 0𝑛𝑁 . Then, by Courant-

Fischer minmax theorem and using the facts that ΛTΛ = Λ and  

ΛTLΛ=L, it follows from (8) that 

 V  t = 𝑥𝑇 𝛬⨂(𝑃𝐴 + 𝐴𝑇𝑃 − 𝛼𝜆2𝑃𝐵𝐵𝑇𝑃) 𝑥 
                                                              −2𝑥𝑇 𝐿⨂𝛼𝑃𝐵𝐵𝑇𝑃 𝑒            (9) 

where 𝜆2 = mini∈𝒩 𝜆𝑖{𝐿 + 𝐿𝑇} > 0. Note that the eigenvalues 

set of Λ is {0,1, … ,1}. Then, one has that 𝐿𝑇𝐿 ≤ 𝜆 𝛬  where  𝜆  

is the maximum eigenvalue of 𝐿𝑇𝐿. Then , the following 

inequality in (10) holds for any scalar 𝑟 > 0. 

 𝑥𝑇 L⨂𝛼𝑃𝐵𝐵𝑇𝑃 𝑒 

              ≤
𝑟

2
𝑥𝑇 𝐿𝑇𝐿⨂𝐼𝑛 𝑥 +

1

2𝑟
𝑒𝑇 𝐼𝑁⨂𝛼2(𝑃𝐵𝐵𝑇𝑃)2 𝑒   

              ≤
𝑟𝜆 

2
𝑥𝑇 𝛬⨂𝐼𝑛 𝑥 +

𝛼2∥𝑃𝐵𝐵𝑇𝑃∥2

2𝑟
𝑒𝑇 𝐼𝑁⨂𝐼𝑛 𝑒               (10) 

Considering (10), we get from (9) that 

   𝑉  𝑡 = 𝑥𝑇  𝛬⨂(𝑃𝐴 + 𝐴𝑇𝑃 − 𝛼𝜆2𝑃𝐵𝐵𝑇𝑃 +
𝑟𝜆 

2
𝐼𝑛) 𝑥 

                                                      +
𝛼2∥𝑃𝐵𝐵𝑇𝑃∥2

2𝑟
∥ 𝑒 ∥2                   (11) 

Assumption 2. Matrix pair (A, B) is stabilizable.  

Theorem 3. 1. Consider the MAS (1) with the control law 

(3) with 𝐾 = 𝐵𝑇𝑄−1 which is driven by the event-triggering 

mechanism (2) with 𝑓𝑖 𝑡 = 𝑟𝑖𝑒
−𝜃𝑖𝑡 . Suppose that Assumption 

1 and Assumption 2 hold. Then, all agents exponentially 

achieve consensus if the following conditions in (12), (13) and 

(14) hold where 𝜂 < 1, 𝜌1and 𝜌2 are positive scalars. 

 
𝐴𝑄 + 𝑄𝐴𝑇 − 𝜌1𝐵𝐵𝑇 + 𝜂𝑄 𝑄

𝑄 −
1

𝜌2
𝐼𝑛

 < 0                                 (12) 

𝑟 ≤
2𝜌2

𝜆 
  and 𝛼 >

𝜌1

𝜆2
                                                                             (13) 

0 < 𝜃 ≤ 𝜂                                                                                               (14) 

Proof.  We will prove the exponential stability of (6) which 

is equivalent to exponential consensus achievement for MAS 

(1). Based on ETM (2), one has that ∥ 𝑒𝑖 𝑡 ∥2≤ 𝑟𝑖𝑒
−𝜃𝑖(𝑡)  

during the time interval 𝑡 ∈ [𝑡𝑟
𝑖 , 𝑡𝑟+1

𝑖 ). Then, ∥ 𝑒𝑖 𝑡 ∥2≤
𝑟𝑒−𝜃𝑡  where  𝑟 = 𝑚𝑎𝑥𝑖𝜖𝒩⁡{𝑟𝑖}. Let 𝑓  𝑡 = 𝑟𝑒−𝜃𝑡 . Thereby, 

 ∥ 𝑒 𝑡 ∥2≤ 𝑁𝑓 (𝑡),     ∀ 𝑡 ∈ [𝑡𝑟
𝑖 , 𝑡𝑟+1

𝑖 )                              (15) 

Let 𝑄 = 𝑃−1. We consider the Lyapunov function candidate 

(7) which yields (11). Enforcing the derived inequality in (15), 

we get from (11) that 

   𝑉  𝑡 = 𝑥𝑇  𝛬⨂(𝑃𝐴 + 𝐴𝑇𝑃 − 𝛼𝜆2𝑃𝐵𝐵𝑇𝑃 +
𝑟𝜆 

2
𝐼𝑛) 𝑥 

                                                      +
𝛼2∥𝑃𝐵𝐵𝑇𝑃∥2

2𝑟
𝑁𝑓 (𝑡)                   (16) 

Applying the Schur complement lemma [22] on LMI (12) 

implies 𝐴𝑄 + 𝑄𝐴𝑇 − 𝜌1𝐵𝐵𝑇 + 𝜌2𝑄
𝑇𝑄 + 𝜂𝑄 < 0. Pre- and post- 

multiplying the derived result by 𝑃 yields 𝑃𝐴 + 𝐴𝑇𝑃 −

𝜌1𝑃𝐵𝐵𝑇𝑃 + 𝜌2𝐼𝑛 + 𝜂𝑃 < 0 which implies 𝑃𝐴 + 𝐴𝑇𝑃 −

𝛼𝜆2𝑃𝐵𝐵𝑇𝑃 +
𝑟𝜆 

2
𝐼𝑛 < −𝜂𝑃 if both conditions in (13) hold. Let 

𝜇 =
𝛼2∥𝑃𝐵𝐵𝑇𝑃∥2

2𝑟
𝑁. Then, it gets from (16) that  

𝑉  𝑡 ≤ −𝜂𝑥𝑇(𝛬⨂𝑃)𝑥 + 𝜇𝑓 (𝑡)                                      
           = −𝜂𝑉(𝑡) + 𝜇𝑓 (𝑡)                                                     (17) 

By the Gronwell inequality, (17) implies 

   𝑉 𝑡 ≤ 𝑉 0 𝑒− 𝜂𝑑𝜏
𝑡

0 +  𝑒− 𝜂𝑑𝜏
𝑡
𝜏

𝑡

0
𝜇𝑓 (𝜏)𝑑𝜏                                      

           = 𝑉 0 𝑒−𝜂𝑡 +
𝜇𝑟

𝜂−𝜃
[𝑒−𝜃𝑡 − 𝑒−𝜂𝑡 ]                               (18) 

From (14), one has that 𝑒−𝜂𝑡 ≤ 𝑒−𝜃𝑡 . Then it follows from 

(18) that 

    𝑉 𝑡 ≤ [𝑉 0 +
𝜇𝑟 

𝜂−𝜃
]𝑒−𝜃𝑡                                                 (19) 

Thus, lim𝑡→∞ 𝑉 𝑡 = 0 and 𝑧(𝑡) in the closed loop system (6) 

exponentially converges to 0. Consequently, all agents in (1) 

achieve consensus exponentially and the proof is completed. 

Remark: Assumption 2 is a necessary condition for the 

solvability of LMI (12) [23]. 



B. Zeno-Exclusion  

Zeno behaviour is an important issue which should be 

excluded in event-triggered control approaches [24]. In order 

to prove Zeno exclusion by each agent i we need to show that 

𝑡𝑟+1
𝑖 − 𝑡𝑟

𝑖 > 0.  

 

Theorem 3. 2. Consider the MAS (1) with the control law 

(6) and suppose that the triggering instants are determined by 

(2). Then, for any initial state 𝑥(0) ∈ ℝ𝑛𝑁  and any time 𝑡 ≥ 0 

no agent will exhibit the Zeno behaviour. 

Proof: From the results of Theorem 3.1 one could rewrite 

the Lyapunov function (7) as V t = 𝑥T(𝛬⨂𝑃)𝑥 ≤ [𝑉 0 +
𝜇𝑟 

𝜂−𝜃
]𝑒−𝜃𝑡 . Then ∥ 𝑥 𝑡 ∥ is bounded on [0, ∞) i.e., there exists 

a positive scalar 𝜌 𝑥 > 0  such that ∥ 𝑥 𝑡 ∥≤ 𝜌 𝑥  for t ≥ 0. 

Furthermore, ∥ 𝑒 𝑡 ∥ is also bounded based on the proposed 

ETM (2). Considering (5), one has that ∥ 𝑥 ∥ ≤ ∥
 𝐼𝑁⨂𝐴 −  𝛼𝐿⨂𝐵𝐾 ∥∥ 𝑥 ∥ +∥ 𝛼𝐿⨂𝐵𝐾 ∥∥ 𝑒 ∥. As a results, 

there exists a 𝜌 > 0 such that ∥ 𝑥 (𝑡) ∥≤ 𝜌  for t ≥ 0. 

Considering the fact that ∥ 𝑥 𝑖 𝑡 ∥≤∥ 𝑥  𝑡 ∥, one has that 

∥ 𝑥 𝑖 𝑡 ∥≤ 𝜌 ,  which yields ∥ 𝑥𝑖 𝑡 − 𝑥𝑖 𝑡𝑟
𝑖  ∥≤ 𝜌 |𝑡 − 𝑡𝑟

𝑖 |. 
Then, the following upper bound on ∥ 𝑒𝑖 𝑡 ∥ holds. 

     ∥ 𝑒𝑖 𝑡 ∥≤  𝜌 |𝑡 − 𝑡𝑟
𝑖 |                                                    (20) 

The proposed ETM (2) with 𝑓𝑖 𝑡 = 𝑟𝑖𝑒
−𝜃𝑖𝑡  guarantees that 

∥ 𝑒𝑖 𝑡 ∥≤  𝑓𝑖(𝑡) for 𝑡 ∈ [𝑡𝑟
𝑖 , 𝑡𝑟+1

𝑖 ). One has that   

   𝑓𝑖 𝑡 =  𝑟𝑖𝑒
−

𝜃𝑖
2
𝑡
 

               ≥  𝑟𝑖𝑒
−

𝜃𝑖
2
𝑡𝑒

𝜃𝑖
2
 𝑡𝑟

𝑖 −𝒯   ,        ∀ 𝑡 ∈ [𝑡
𝑟

𝑖
, 𝒯] , 𝒯 ≥ 𝑡𝑟+1

𝑖 . 

               =  𝑟𝑖𝑒
−

𝜃𝑖
2
𝒯𝑒−

𝜃𝑖
2

(𝑡−𝑡𝑟
𝑖 )  

             ≥  𝑟𝑖𝑒
−

𝜃𝑖
2
𝒯  1 −

𝜃𝑖

2
 𝑡 − 𝑡𝑟

𝑖   .                        (21) 

 Let 𝑡 = 𝑡𝑟+1
𝑖 , it yields form (21) that 

     𝑓𝑖(𝑡𝑟+1
𝑖 ) ≥  𝑟𝑖𝑒

−
𝜃𝑖
2
𝒯[1 −

𝜃𝑖

2
 𝑡𝑟+1

𝑖 − 𝑡𝑟
𝑖  ]                         (22) 

Now, suppose that agent i triggers at 𝑡𝑟
𝑖 . The next triggering 

instants, 𝑡𝑟+1
𝑖 , would be triggered by ETM (2) whenever the 

value of ∥ 𝑒𝑖 𝑡 ∥ reaches the threshold  𝑓𝑖(𝑡) at 𝑡 = 𝑡𝑟+1
𝑖 .  

Thus, it is concluded from (20) and (22) that  

 𝜌 |𝑡𝑟+1
𝑖 − 𝑡𝑟

𝑖 |  ≥  𝑟𝑖𝑒
−

𝜃𝑖
2

𝒯[1 −
𝜃𝑖

2
 𝑡𝑟+1

𝑖 − 𝑡𝑟
𝑖  ]                 (23) 

Consequently 

   𝑡𝑟+1
𝑖 − 𝑡𝑟

𝑖 ≥
 𝑟𝑖𝑒

−
𝜃𝑖
2 𝒯

𝜌 +
𝜃𝑖
2  𝑟𝑖𝑒

−
𝜃𝑖
2 𝒯

≡ 𝜏𝑟,𝑖
∗                                       (24) 

It is proved that each agent 𝑖 ∈ 𝒩excludes the Zeno 

behaviour as we always have 𝑡𝑟+1
𝑖 − 𝑡𝑟

𝑖 ≥ 𝜏𝑟,𝑖
∗ > 0. 

Therefore, the proof is completed.  

Table 1. The proposed co-design procedure  

Co-design Procedure: Given MAS in (1) with stabilizable 

dynamic agents which communicate over a strongly connected and 

balanced graph, the proposed event-based consensus controller in 

terms of (2) and (3) can be constructed in the following steps. 

   Step 1- Take a positive scalars ρ1, ρ2 and 𝜂 < 1. 

   Step 2- Solve LMI (12) to get one feasible matrix Q = QT > 0 . 

   Step 3-Compute 𝐾 = 𝐵𝑇𝑄−1 and choose 𝛼 >
𝜌1

𝜆2
. 

   Step 4- For each agent i, choose  0 < 𝑟𝑖 ≤
2𝜂

𝜆 
  and 0 < 𝜃𝑖 < 𝜂.  

 

 

C.   Co-Design Procedure  

In most existing results, a consensus controller were 

developed first based on an assumption that the agents interact 

over a perfect communication network, and then an event-

based transmission scheme were designed to guarantee the 

consensus achievement under the event-based strategy. 

Though, one important challenge in the event-based schemes 

is to co-design the local ETMs and the distributed control laws 

so as to enable agents achieving consensus with as few 

resource utilization as possible.  

Using the results from Theorem 3.1 and 3.2, we give the 

following co-design procedure in Table 1 to solve the event-

based consensus problem of linear MAS (1).  
 

 

IV. SIMULATION RESULTS 

In this section, a simulation example is given to illustrate 
the effectiveness of the analytical results. Consider four agents 
whose dynamics are described by  

𝑥𝑖 (𝑡) =  
−1 1 0
0 −0.3 0.4
0 −0.4 −0.3

 𝑥𝑖(𝑡) +  
0.1
0

−0.1
 𝑢𝑖(𝑡)       (25) 

One can check that the matrix pair (A, B) is controllable 
The communication topology is shown in Fig 1 which is a 
strongly connected and balanced directed graph. We choose 
𝜂 = 1, ρ1 = 0.1 and ρ2 = 1. Solving LMI (12) by using the 
SeDuMi toolbox [25] gives a solution   

𝑄 =  
0.3918 0.0166 −0.0254
0.0166 0.0491 −0.0025

−0.0254 −0.0025 0.0510
 .  

Using Theorem 3.1, the feedback gain matrix in the control 
law (3) is derived as 𝐾 =  0.1381 −0.1436 −1.8990 . 
We set the coupling gain in the control law (3) as 𝛼 = 0.2 and 
the local ETM parameters as r1 = 0.09,  r2 = 0.12, r3 =
0.11, r4 = 0.1 and 𝜃𝑖 = 0.2 for 𝑖 = 1,2,3,4 which satisfy the 
required conditions (13) and (14). The initial conditions for 
numerical simulation are randomly chosen from interval 
[−1, 1]. Furthermore, it is supposed that the system achieve 
consensus whenever 𝑚𝑎𝑥𝑖 ,𝑗 ∥ 𝑥𝑖(𝑡) − 𝑥𝑗 (𝑡) ∥≤ 10−4. 

Numerous simulations are conducted and the main results are 



discussed in the following. Fig. 2 illustrates the state 
trajectories of the agents under the proposed event-triggered 
consensus controller, from which it can be observed that the 
agents achieve consensus. Note that each agent communicates 
with neighbors and updates its control input just at the 
triggering instants. In Fig. 2, the markers present the 
broadcasted samples to the agents. Furthermore, the variations 
of the measurement error norm ∥ 𝑒𝑖 𝑡 ∥2 during the numerical 
simulation are given in Fig. 3 for each agent i. The figure 
shows that ∥ 𝑒𝑖 𝑡 ∥2 is always upper bounded by threshold 

function 𝑓𝑖 𝑡 = 𝑟𝑖𝑒
−𝜃𝑖𝑡  and it resets to zero on event instants 

 𝑡𝑟
𝑖  𝑟=1,2,…. A brief report of the simulation results is given in 

Table 2 where for each agent i, 𝜏𝑚𝑖𝑛 𝑖
= 𝑚𝑖𝑛 𝑡𝑟+1

𝑖 − 𝑡𝑟
𝑖  

𝑟=1,2,…
 

and 𝜏𝑚𝑎 𝑥𝑖
= 𝑚𝑎𝑥 𝑡𝑟+1

𝑖 − 𝑡𝑟
𝑖  

𝑟=1,2,…
 are defined as the 

minimum and maximum inter-event time interval, respectively. 
The average inter-event time interval is denoted by 𝜏𝑚𝑒𝑎𝑛 𝑖

. The 

numbers of triggers generated by the local ETMs in agent 1, 2, 
3, 4 are 12, 11, 10, and 9, respectively. The event triggering 
instants are given in a separate plot in Fig. 4.  Furthermore, 
Table 2 presents the number of samples that each agent sent to 
its neighbours and also the number of its control signal updates 
before achieving consensus. For example, the second agent 
broadcaste 24 samples, 12 samples to third agent and 12 
samples to forth agent. Moreover, the number of updates in 
control input 𝑢2(𝑡) is 33. Because, this control input would be 

updated at {𝑡𝑟
2}𝑟=1,2,..,11  ∪  {𝑡𝑟

1}𝑟=1,2,..,12  ∪  {𝑡𝑟
3}𝑟=1,2,..,10 . 

   In the following, we give a comparison between our 
proposed approach in Theorem 3.1 and the ones in [19] 
which has addressed event-based consensus in strongly 
connected and balanced graphs. The required design 
parameters in each approach are chosen in order to 
generate nearly the same settling time. Table 3 gives the 
results derived by [19]. Comparing the presented results 
in Table 2 and Table 3 demonstrates the superiority of the 
proposed control scheme in Theorem 3.1 in term of 
reduction in number of broadcasts by each agent and also 
in term of control executions in each agent. By applying 
the proposed event-based approach in Theorem 3.1, all 
agent broadcasts 75 samples through the communication 
network to their neighbours while the agent broadcasts 
275 samples when the given consensus protocols by [19] 
is employed. Then, Theorem 3.1 makes a significant 
reduction in the communication network utilization and 
also facilitates more energy saving than [19]. 
Furthermore, from Table 3, the agents achieve consensus 
with 183 control signal updates while, it is 432 control 
updates when the given method in [19] is applied. Thus, 
the agents could achieve consensus with less control 
executions and less data broadcasting which facilitate 
more energy saving and decreasing actuators wears by 
applying the proposed co-design approach in Table 1. 

 

 

Fig. 1. Communication network topology. 

 

 
Fig. 2. State trajectories of agents. The markers represent the broadcasted 

samples to the neighbours .  

 

 

Fig. 3. Evolutions of ∥ 𝑒𝑖 𝑡 ∥2. The threshold function 𝑓𝑖 𝑡 = 𝑟𝑖𝑒
−𝜃𝑖𝑡  is 

shown by dotted line for each agent i . 

 

Table 2. Simulation results via the proposed event-triggered consensus 

controller in terms of (2) and (3) 

 Agent 1 Agent 2 Agent 3 Agent 4 

𝜏𝑚𝑖𝑛 𝑖
, (sec.) 0.46 0.53 0.31 0.50 

𝜏𝑚𝑎𝑥𝑖
, (sec.) 8.89 8.42 7.96 7.05 

𝜏𝑚𝑒𝑎 𝑛𝑖
, (sec.) 1.67 1.90 1.66 1.81 

Total number of event triggers  12 11 10 9 

Number of broadcasted samples 24 22 20 9 

Number of control input update 31 33 33 20 

 

 

Table 3. Simulation results by applying the proposed event-triggered 

consensus controller in [19]. 

 Agent 1 Agent 2 Agent 3 Agent 4 

𝜏𝑚𝑒𝑎 𝑛𝑖
, (sec.) 0.37 0.40 0.47 0.44 

Total number of event triggers  39 48 31 39 

Number of broadcasted samples 78 96 62 39 

Number of control input update 109 118 118 87 

1 2

4

3 .

.



  

 

Fig. 4. In each plot, the horizental axe indicates the triggering instants and 

the vertcal axe denotes the length of inter-event time intervals , {𝑡𝑟+1
𝑖 −

𝑡𝑟
𝑖 } ,in seconds, for the realted agent. 

 

V. CONCLUSION 

The paper has investigated a distributed event-triggered 
approach to address the consensus problem of general linear 
agents in strongly connected and balanced topologies. A time-
dependant event-triggering strategy has been first proposed for 
each agent and then sufficient conditions have been provided to 
achieve consensus exponentially. It has been proved that the 
proposed local ETMs did not introduce Zeno behaviour in the 
closed loop systems as the inter-event time intervals were 
lower-bounded by a positive constant for each individual agent. 
A co-design procedure has been given to determine the 
required design parameters for the investigated event-based 
control law and local ETMs. Following the proposed control 
scheme, each individual agent required to broadcast data and to 
execute its control input just at the triggering instants. 
Consequently, it led to a significant reduction in the 
communication network utilization and energy consumption in 
addition to extend the lifespan of the actuators. Simulation 
results illustrated the effectiveness of the proposed method. 
Future work will involve extending the proposed event-driven 

approach to address the H∞ consensus problem for nonlinear 

dynamic agents in directed topologies.  
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