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Abstract— In recent years, distributed and zero-day attacks have 

emerged as one of the most serious security threats. The 

incomplete knowledge and information of a stand-alone intrusion 

detection system (IDS) is one of the main reasons for the success of 

these attacks. Collaborative IDS (CIDS) is one solution to address 

this problem. IDSs in this framework share their knowledge and 

consult with each other. Having access to a larger number of 

detection libraries for IDS configuration, along with the possibility 

of more cooperation with other participants in this collaborative 

system can lead to improved overall performance. However, a 

larger number of libraries and more collaborative activities 

increase resource consumption and communication overhead, 

which may in turn reduce system performance. There are a large 

number of papers in the literature that have utilized game theory 

to describe the optimal configuration of standalone or networked 

IDSs. In this paper, those works have been extended and the 

interactions between the attackers and IDSs in a CIDS framework 

have been modeled with a non-zero sum stochastic game. In this 

regard, the solution concept of stationary Nash equilibrium has 

been applied to this game to describe the optimal configuration of 
each IDS in a CIDS and the expected behavior of attackers.  

Keywords- Collaborative IDS; Network Security; Stochastic 

Games; Stationary Nash equilibrium.   

I.  INTRODUCTION  

With the growing complexity of security threats, various 
counter measures have been proposed for intrusion detection 
and prevention. As a complementary defense mechanism in 
addition to the other protection tools, Intrusion Detection 
Systems (IDS) are employed to monitor network events and user 
activities. Emerging unknown, distributed and fast spread 
attacks have highlighted the deficiencies of standalone IDSs 
which generally suffer from local knowledge and limited 
information about the whole environment [1]. To overcome 
these problems, Collaborative Intrusion Detection Systems 
(CIDSs) have been proposed in the literature by researchers and 
security specialists [2].  

A CIDS consists of a set of IDSs which are deployed 
strategically in different locations throughout a network, and 
communicate with each other using standard communication 
protocols such as IDMEF [3]. These IDSs can be heterogeneous 
(e.g. provided by different vendors) and employ different 
detection technologies [4]. They are trying to make better 
decisions and reach better performance by collaborating with 
other nodes in the CIDS. The strength of a CIDS dependents on 
the strength of each standalone IDS, in terms of accuracy, 
detection rate, etc. [5]. Collaboration will help standalone IDSs 

to improve their detection rate since they benefit from the 
collective knowledge and experience shared by other nodes. 
This access to network-wide information will increase the 
probability of detection of zero-day and distributed attacks [6].  

If IDSs utilize a larger number of detection libraries and 
more collaboration with their neighboring IDSs, it has been 
proven that the performance will be enhanced [7]. However, the 
larger number of libraries will decrease system performance in 
terms of IDS throughput, and also more collaboration will 
increase communication overhead [8, 9]. Hence there is a 
tradeoff between system performance and security enforcement 
level [3]. In other words, standalone IDSs in a CIDS require a 
proper strategy for library configuration [5].  

Policy based configuration is an approach to IDS 
configuration [10, 11]. In order to improve system performance, 
researchers have utilized game theory to tune configuration 
policies. Non-cooperative interactions between attackers and 
defenders, the existence of several trades-offs that exist in IDS 
problems, and the rationality of attacker and defender are some 
of the characteristics of this network security problem which 
makes game theory a promising approach [12, 13]. 

Considering the urge for CIDS self-configuration [14], we 
have utilized a non-zero sum discounting stochastic game to 
model the problem of collaborative IDS configuration. In 
particular, we have exploited game theory to describe optimal 
configuration strategies for collaborative IDSs in a CIDS. 
Specifically, the solution concept of Stationary Nash 
Equilibrium has been applied to the game in a descriptive way 
which describes the players’ optimal stationary strategies. Using 
this game approach we will be able to design a game theory-
based methodology in which configuration policies are 
dynamically updated according to network conditions. This 
paper can be considered as an extension of the work in [11] 
where the networked IDS configuration problem has been taken 
into account. Since there is no collaboration between standalone 
IDSs in networked IDSs, our proposed game model is 
completely distinct from [11] in defense scenario, defenders’ 
utility functions, and state transition probability.  

The paper proceeds as follows. In Section II, we study the 
CIDS frameworks and their characteristics. Section III will 
overview some related works on collaborative IDS 
configuration and application of game theory in network 
security. In section IV, we formulate a nonzero-sum stochastic 
game to model the interaction between   attackers and   
collaborative IDSs. The existence of a solution for this game is 
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presented in section V. Finally, the paper concludes in section 
VI. 

II. CIDS FRAMEWORKS 

A CIDS consists of a set of intrusion detection systems 
which are located in different locations on a network and 
communicate with each other using a standard  protocol [15]. In 
the literature, several frameworks have been proposed for a 
CIDS that consistof common modules such as: detection unit, 
log analyzer (correlation unit), acquaintance management, trust 
measurement, feedback aggregator and resource management 
[16]. 

A detection unit utilizes different technologies in order to 
inspect and analyze the traffic for detection of suspicious 
behavior. It then produces the results of this analysis in the form 
of low-level intrusion alerts. Processing and analyzing these 
alert logs is performed by the IDS correlation unit. The results 
of its analysis will be reported to other IDSs as a high-level 
intrusion report [2].  

Acquaintance management is another important module in a 
CIDS. The responsibility of this module is to choose several 
IDSs for knowledge sharing and updating the list of 
acquaintances. There are some challenges for acquaintance 
management such as how to choose the trusted and expert 
acquaintances and also how to determine the optimum number 
of them. The larger the numbers of acquaintances are, the more 
sophisticated decisions can be made. But, this may result in 
more consumption of resources and more network overhead 
which adversely affects the system performance [17].  

In order to find a more trustworthy and expert acquaintance, 
the trust management module is proposed. There are many 
methods in the literature for evaluating the trustworthiness of 
peers, such as test based methods, and reputation based methods 
[18].  

Another module in a CIDS is feedback aggregator. When the 
IDSs in a CIDS have not enough confidence to make proper 
decisions about the received traffic individually, they can send 
consultation requests to their acquaintances to inquire their 
opinions. These opinions are then fed to the feedback 
aggregator. The output of this function is the final decision 
which will be applied on the traffic [19].  

Processing the received traffic and collaborating with other 
peers in a CIDS will consume the resources of IDSs. Also due to 
the reciprocal altruism and incentive based design of typical 
CIDSs, all participants are motivated to allocate some of their 
resources to their acquaintances in order to answer their 
consultation requests. The management of these resources is the 
main responsibility of the resource management module [20].  

In order to establish the appropriate collaboration between 
nodes, several architectures have been proposed, namely: 
Centralized, Hierarchical, and Fully-Distributed (Decentralized) 
[2]. Each of these aforementioned architectures has their pros 
and cons. The primal assumption in this paper is that the IDSs 
are connected to each other based on a peer-to-peer architecture 
(Fully-Distributed). In the Fully-Distributed approach each node 
possesses both the detection unit and the correlation unit, 
simultaneously. Hence, in this architecture, each node can 
communicate with its peers (e.g. in a peer-to-peer overlay). 
Some of the main challenges in this architecture include 
specifying the communication protocol between peers, and 
identifying appropriate mechanisms for dissemination of 
information [2].  

III. RELATED WORKS 

Clearly the principal purpose of an IDS is to provide 
acceptable detection rate. In order to achieve this objective, 
CIDSs have been considered as an interesting topic for 
researchers.  Appropriate configuration of IDSs in a CIDS, such 
that it leads to a satisfactory accuracy in terms of intrusion 
detection, is one of the major challenges in this domain. The 
term configuration stands for selecting a set of detection 
libraries which forms the core of the decision-making engine. 

In [21], an IDS reconfigures its detection libraries according 
to an updating policy and based on information received from 
other distributed IDSs. Through this reconfiguration process, an 
IDS can acquire the information of the whole environment and 
would be capable of detecting new and unknown attacks. 
Another approach has been suggested in [22] to reconfigure an 
IDS in a cooperative platform. When the IDS does not have 
sufficient confidence to make a local decision about an event, it 
will consult with other IDSs and request their opinion. The IDS 
can then reconfigure its detection libraries using a majority 
mechanism (e.g. voting), after collecting its acquaintances’ 
answers. In some other works, the standalone IDSs in a CIDS do 
not reconfigure themselves; instead when an IDS cannot take a 
decision locally, it prefers to take its acquaintances feedbacks 
and perform their aggregate opinion. Doing so, the IDS will 
increase its detection rate. None of these works have utilized a 
formal approach for IDS configuration in their collaborative 
platforms.   

In the literature, there are a numerous works which utilize 
game theory to study IDS problems. Specifically, some of them 
have taken into account the problem of IDS configuration and 
also Networked IDS configuration. For instance, in [10] a non-
cooperative game approach has been exploited to address the 
problem of IDS configuration. In this paper, Zhu and Basar have 
used a two player zero-sum stochastic game to describe the 
expected behavior of the attacker and the defender. The works 
in [11] and [23] have dealt with the problem of networked IDSs 
configuration with objective of detecting simultaneous attacks 
from different attackers, with minimum resource utilization. The 
problem has been formulated as a multi-player nonzero-sum 
stochastic game to configure the networked IDSs dynamically. 
The objective of these papers was to describe the optimal 
stationary policies (strategies) for IDS configuration using Nash 
equilibrium solution concept. Nonetheless, in these works the 
collaboration between IDSs has not been taken into account.  

To summarize, some of the papers have considered the 
problem of IDS configuration in a collaborative platform, but to 
they have not used game theory to address the problem. The 
other works, though, they utilize game theory to address the 
problem of IDS and networked IDS configuration, but they did 
not consider the collaboration between IDSs.   

To the best our knowledge, there is no work in the literature 
that has modeled the IDS configuration problem in a CIDS 
using g game theory. In this paper, the configuration strategies 
of IDSs in a CIDS have been described through the Stationary 
Nash equilibrium solution concept.  

IV. NON-ZERO SUM STOCHASTIC GAME MODEL 

Consider a set of defending machines (IDSs)   
               that constitute a peer-to-peer CIDS. These 
machines are connected to each other by a bidirectional graph 
       . Each machine is only responsible for protecting its 
corresponding sub-network. The network is targeted by multiple 



malicious attackers that are represented by the set   
               .  

Note that in the following subsection we utilize the game 
model in [11] in order to model the available actions of 
defenders and their configuration costs.  

A. Defending Machines 

Each machine    can only collaborate with its adjacent 
nodes (peers) in the graph   that we refer to as acquaintances 

throughout this paper. Let   
  represents the set of 

acquaintances of a machine   , i.e.,   
               . 

Simplifying our model, in this paper we assumed that the 
number of acquaintances of a machine does not change with 
time. Although in real world, each machine must have the 
ability to change its acquaintances based on their 
trustworthiness, expertise, availability, etc. [24].  

Miss-used based IDSs can detect the attacks by comparing 
the incoming traffic with their selected rules. Typically these 
rules are categorized into the number of detection libraries based 
on the class of attacks they can detect.  For example Snort has 
51 detection libraries with more than 9000 rules [10]. Consider 

                  
  to be the set of these detection libraries 

with each of them consisting of a number of rules. For example 
let the set                  be a particular detection library 
with   rules. IDSs compare each received packet with these 
rules to find suspicious behavior. These rules consist of a 
number of parameters which are assigned proper values by an 
administrator. These values will be compared to the equivalent 
parameters’ value for each packets. The received packets are 
compared to each rules and according to the percentage of 
matching, the IDS should take appropriate actions. These 
actions are based on predefined policies.  

 Note that due to the inherent heterogeneity of IDSs in a 
CIDS, the set of detection libraries can be different each 
machine. Each machine can select some of these available 
libraries from their rule-base and load them into its detection 
unit. Let   

         denote the set of all possible subsets of   . 
Configuring its detection unit, each machine    chooses a set of 
libraries      

  and uses them to inspect the incoming traffic. 
In fact   

  includes the available actions (configuration) of 

machine   .  Also, let    ∏   
  

    denote the joint action set 

and                    denote the joint defender actions.  

IDSs should try to decide and act automatically and 
independently as far as possible. Hence, a well-designed IDS 
should behave differently in various situations. For instance, 
when the network is in a normal condition and no attack has 
occurred, there is no need that the IDS behave too inspective. 
On the contrary, when the sub-network has been targeted by 
attackers several times, the IDS should adopt a more strict 
monitoring policy. Hence it can use more high-level detection 
libraries in its configuration. Also, in the case of CIDS, each 
standalone IDS should collaborate with its acquaintances 
according to the situation. In this regard, we adopt different 
states for defending machines so that they can condition their 
actions based on these states. It is considered that each machine 

can be in one of the finite number of states       
       .  

The state of a machine represents the situation in which they 
should make a decision. In our model these states include: High-
Confidence (HC), Medium-Confidence (MC), Low-Confidence 

(LC). Let   
             be the set of these states and 

   ∏   
  

    denote the CIDS states. It is expected that if a 
defending machine is more inspective, it consumes more 

resources. Furthermore, it consults more with its acquaintances 
when its state changes from HC to MC to LC.  

The more protective an IDS is, the more resources it should 
consume to better configure, monitor and collaborate. These 
mentioned limited resources include CPU, RAM, network 
bandwidth, etc. These resources are used for loading detection 
libraries, inspecting and processing of incoming traffic, 
collaborating with other peers in a CIDS. Using each resource 
will impose a corresponding cost to the defender. In our model, 
resource costs include configuration cost and collaboration cost. 
Configuration cost    

is equal to the sum of all independent 

library costs in the configuration (loaded into the detection unit). 

Consider    
    

     be the mapping function which 

measures the cost of each configuration. Hence, the cost of a 
configuration is obtained from:  

                         
    

      ∑       
    

                        

where            is a mapping that measures each library 

cost. 

The collaboration cost includes two distinct costs. First is the 
cost of resources that a machine should allocate to its 
acquaintances owing to the reciprocal altruism and incentive-
based design of CIDS. Second is the cost of collaboration when 
a particular machine needs to consult with its acquaintances. In 
our model the first cost is considered to be static due to the static 
number of acquaintances and will be ignored in our calculation. 
The second cost    

 is the sum of all resources that a defender 

machine    would consume when it is obliged to collaborate 
with them. Let     denote the static cost which the 
collaboration to each peer will impose to the machine    (The 
cost includes sending consultation messages, allocating 
bandwidth, etc.); hence the collaboration cost is obtained from 

   
 |  

 |    , where |  
 | denote the number of 

acquaintances. 

As mention before, defending machines collaborate with 
their acquaintances based on their trustworthiness. In the 
literature there are numerous works on measuring the level of 
trust among IDSs in a CIDS. For instance, Fung et al. in [20] 
propose a Bayesian trust management model for standalone 
IDSs in a CIDS. In this work, the trust model evaluates the 
trustworthiness of each IDS based on their expertise and 
honesty.  Using this model, the trust management component of 

IDSs assigns a trust value to each acquaintance. Let           
denote the trust value which defender    has assigned to its peer 
  . This value can be updated through time. In [20] these value 

can be updated by evaluating the answer of the peer to some test 
messages or real requests. After receiving their answers the 
quantitative amount of expertise and honesty are evaluated by 
using a satisfaction function.  

B. Attackers 

In this subsection, we review the model of attackers which is 
presented in [11].  

Malicious attackers, depending on their intention and their 
motivation, utilize various attacks to compromise their targets. 
For example, an attacker who intends to launch a highly 
destructive attack would utilize more complex and creative 
attacks, e.g. distributed attacks, instead of simple ones. 
Accordingly, the attackers can be in one of the finite number of 
states which show the level of their aggressiveness. Let    



   
 
       denote the state of attacker    which can be either 

Aggressive (A) state or Not-Aggressive state (NA). 

Consequently,     ∏   
  

    will be the aggregate state of 

attackers. For each attacker the set       
     

      
 

  
  

shows all available attacks which can be exploited to 
compromise the targets. Each attacker can choose a number of 
attacks to its targets at time instance     which is denoted by 

   
   

  [    
   

]            
 . Consequently, the attack profile 

is the matrix          
   

                 which represents all 

attacks launched by all attackers to all machines at time    .  

If the attacker    launches an attack    
   

 to the defender    

at time    , the damage caused by the attacker would be  ̃  
   

 if 

not detected. The damage can be measured by the mapping 

 ̃        , i.e., ̃  
   

  ̃      
   

   ∀    
   

      . Also there 

exists the mapping   ̃        that measures the cost of each 

attack, i.e.,  ̃    ̃      . It is sensible that the evaluation of 

attacker about the damage incurred to the defender be deferent 
from defender’s evaluation about perceived damage. It is 

considered that the mapping          measures the 

damage perceived by the defender, i.e.,    
   

   (    
   

).  

C. The Attack-Defence Scenario 

At the beginning of each stage of the game, the attacker 

chooses a vector of attacks       
  from its available attack 

types    in order to attack its target set ( ̅ ). The defender, on 

the other side, selects a configuration of detection libraries    
from its available configuration   

 .   

In order to detect the attacks, the defending machine    

compares the received packets of the attack     with each of its 

available rules in its selected configuration   .  Normally, the 
IDSs generate an alert as a result of processing the packets and 
rank these alert based on some metrics. The ranking measures 
the level of matching of the parameters’ values of the rules with 
the equivalent parameters’ values of the received packet. For 
example, Snort ranks the alerts in three levels (low, medium and 
high) and Bro has up to 100 levels.  Consider the function  

     
              maps the IDSs alert ranking onto the [0, 

1] interval. Let               denote the alert ranking which 

is provided by the machine   , where      signify a benign 
traffic and      signify a highly dangerous one. A bigger 
value of    denote the more dangerous traffics.  

Definition 4.1: If all parameter values of one of these rules 
match with the equivalent parameter values of a received packet 
of an attack, we refer to it as matching (     . If all rules 
were compared with the packets and none of these parameter 
values match, we refer to it as non-matching (    ). Finally, if 
just some of the rules match with the packet, we refer to it as 
partial-matching (        ).  

In our modeling of defense scenario, we assume that when 
an IDS receives a packet and compares it with its detection 
libraries it may choose one of the following actions: 

1) If matching has occurred (     , IDS will block the 

traffic. In this situation the IDS decides that its decision is 

correct by a high level confidence and there is no need to check 

the other rules.  

2) If partial-matching has occurred (        ), the IDS 

will log some alerts depending on the percentage of matching. 

The IDS may take one of the following actions based on the 

level of alert. The level of alert is determined by the IDS in the 

generated logs: 2-1) if the level of alert is less than a 

predefined collaboration threshold (   
 ), the packet will be 

permitted to pass. 2-2) else, the traffic will be blocked and the 

IDS will collaborate with its acquaintances in order to make a 

final decision.  

3) If no-matching has occurred (    ), the packet is 

permitted to pass. 

In order to collaborate with its acquaintances, each IDS 
sends the traffic as a consultation message to its acquaintances. 
Each of these peers analyzes the traffic and sends back the alert 
ranking as an answer message. The IDS receives their feedbacks 
and gives their answers as the input of its feedback aggregator 
function. In the literature, various methods have been proposed 
to aggregate the feedbacks. For example, Fung et al. in [20] 
have proposed a weighted majority method to aggregate their 
feedbacks. In this method the weights are based on the trust 
values of peers (   ). Specifically, in this work only the 

feedbacks of those peers whose trust values are greater than a 
threshold is accepted. The output of the feedback aggregator 

function is denoted by   
 , and is a value in the [0, 1] interval 

which is the rank of alert based on peers’ opinions.   

When the aggregate feedback value is obtained, the IDS will 

take different decisions with regard to       
   which is the 

distance of IDS alert ranking from aggregation of its peers’ alert 
ranking. If the distance of two alert rankings is greater than a 

predefined threshold (   
 ), the IDS will understand that its 

detection unit has not enough knowledge to make the decision 
locally and more collaboration is needed from this point on. In 
order to collaborate more with others, it should decrease the 

collaboration threshold proportional to       
  . On the other 

hand, if the distance is lower than a predefined threshold (   
 ), it 

can decrease the collaboration threshold to avoid the excessive 
collaboration costs. In our modeling, these actions will be 
performed according to the defenders’ state. Doing so, we have 
allocated a static state depended value for each of the 

aforementioned thresholds (   
     

     
 ). Let    

    denote the 

collaboration threshold in state   , and    
   denote the 

collaboration threshold in state   . Similar notations have been 
used for other thresholds for the other states. The allocation of 
values to each threshold should adhere to the following rules: 1) 

   
       

       
   , 2)    

       
       

   , 3) 

   
       

       
   . 

 For example, consider that a partial matching has occurred 

and the alert ranking is greater than    
 . Therefore the defender 

has decided to collaborate with its peers. After feedback 

aggregation, if       
      

  the defender state will transit to 
LC. Due to the lower value of predefined collaboration threshold 
(   

   in state LC proportional to other states, the defender can 
have more collaboration with its peers. It is noteworthy that all 

predefined thresholds (   
     

     
 ) considered for a defender 

  , only depend on its state    regardless of time.  

D. State Transition Probability  

As stated before, the attack-defense scenario is modeled as a 
stochastic game. Therefore, let         denote the system 

state, and      [   
   

    
   

]    be a particular system state 

at each time instance    . The next state of the defender    will 
be obtained based on the following rules:  



1) If      , the next state will be HC. 

2) If       
 , the next state will be HC. 

3) If        
     and       

      
 , the next state will 

be HC.  

4) If        
     and       

      
 , the next state will 

be LC. 

5) If        
     and    

        
      

 , the next state 

will be MC. 

It is worth to note that for a particular defender, the 
probability of matching, non-matching, and partial-matching 
depend on the selected configuration   , attack profile   and 
system state  . Furthermore,    and   

  depend on the defenders 
joint action set  , attack profile   and system state  .  

The system state moves from      to        with a 

probability measure  , where               are two system 
states. Owing to the independency of state transition probability 
of attackers and defenders,   can be determined by:  

 (      |              )

 ∏  (   

     
|             

   
)

    

∏  (   

     
|             

   
)    

    

 

E. Utilities 

The utility of players is determined by the system state and 
the actions chosen by players. Hence, the utility function of the 

defending machine    at time   is defined by   
   

 ∏   
   

   

  
           . In this scenario the defender should care 

about its security loss, the cost of its configuration and the cost 
of its collaboration. So the defender prefers to choose a 
configuration which causes less damage and less cost to itself 
and more cost to its attackers. Hence, the defender    will try to 

maximize its utility function   
   

 obtained as follows. 

  
   (       

   
     )

     
   

(    |  
   

     )     
 (  

 ) 

     
 (  

      )                                  

where   
   

        
   

       denotes the damage to machine   , 

that is caused by the attack profile   if the machine    chooses a 

configuration    at time instance  . The security loss 

   ∏      
   

      can be expressed as:  

           ∑         
      

                            

     (        )   {
                

 

                      
          

To understand the above formula, consider an attack is received 
by the machine   ; if the IDS permits the traffic to pass, then the 
attack will be successful and the damage will be completely 
perceived by the defender; if the IDS blocks the traffic, then the 
attack will not be successful. For example, if non-matching has 
occurred (      the IDS will permit the traffic to pass; and if 
matching has occurred (      the IDS will block the traffic.   

The configuration cost is obtained from (1), and 
collaboration cost is obtained from the following. 

   
 (  

      )  {
|  

 |                      
     

                                                
      

Similarly, an attacker prefers to choose the attacks which 
cause more damage to defenders and less cost to itself. Hence, a 

rational attacker attempts to maximize its utility  ̃ 
   

 which it 

obtained from:  

 ̃ 
   

(  
   

          )   ̃  (  
   

|         )  ∑ ̃      
   

 

 

   

        

where  ̃  is the damage impose by the attacker    to its target 

set  ̅  which can be obtained from: 

                 ̃ (  |   )  ∑  ̃      
    ̅ 

                                     

F. Strategies and existence of Eqiulibrium 

As stated before, IDSs choose their configuration from their 
available action set only based on the level of their confidence to 
their decisions. Also, the attackers’ choice of attack is 
considered to be dependent on their aggressiveness level. Hence, 
the strategies of the players are stationary. Stationary strategies 
do not consider the entire history and only depend on the states 
(are independent of time).  

Let                                                    
denote a history of    stages of the game, and      denote the set 

of all possible histories up to this stage. Consider               

denote the behavioral strategy of the defender   which is the 

probability of playing action      
    

   for history     .  

Definition 3.1 (Markov strategy, [25]):  A Markov strategy 

     is a Behavioral strategy in which     (       )  

    (        ) if   
     

 
, where   

  and    
 
 are the final 

states of      and      , respectively.  

Definition 3.2 (Stationary strategy, [25]):  A Stationary 

strategy      is a Markov strategy in which     (        )  

    (         ) if   
     

 
, where   

  and    
 
 are the final 

states of       and       , respectively.  

The Markov strategy (    ) and Stationary strategy (    ) of the 

attacker can be defined similarly.  

The stationary strategies of a defender will be in the form of 
probability distribution over its all possible configuration (  ) 
from its action set   

  for each state. Likewise, the stationary 
strategy of an attacker will be in the form of probability 
distribution over all its possible vector of attacks    from its 

action set   
  for each state. For example, for the defender   , 

assume            , so its possible configuration will be  

  
                        . In regards of the above lines, an 

instance of its stationary strategy can be [0, 0.2, 0.4, 0.4] for 
state LC, [0, 0.3, 0.3, 0.4] for state MC, and [0, 0.1, 0.3, 0.6] for 
state HC. The characterization of stationary strategies of players 
can be found in [11].  

Considering the above definitions, let    and    denote the 

strategy sets of a defender and an attacker, respectively. The 
multi-person stochastic game is well defined by the set 
〈        ̂           ̃                                〉. 

As mentioned before, the utility of players in the stochastic 
game between the IDSs and attackers is discounted. Let  ̅ 
denote the multi-person nonzero-sum stochastic game. Hence, 

the discounted utilities of defending machine    and attacker   , 

which is the sum of discounted payoffs over the infinite horizon 
can be obtained as follows [11]. 



      
         ∑   

 

 

   

       ̂ 
                          

 ̃ 
         ∑  ̃ 

 

 

   

       ̃ 
   

(      )                

where    and  ̃  are defender’s and attacker’s discounted factor 

which are indicate their level of impatience.  

V. NASH EQUILIBRIUM ANALYSIS 

In order to describe the optimal stationary defense strategies 
of defenders and predict the expected behavior of attackers, the 
solution concept of Nash Equilibrium is employed to the game 
 ̅. The existence of Stationary Nash Equilibrium is ensured 
based on the following theorem.  

Theorem 4.1([26, 27]): Every nonzero-sum finite 
discounted stochastic game possesses at least one equilibrium 
point in stationary strategies.  

Knowing that the payoff of players in  ̅ is bounded, an 
iterative method to find a stationary  -Nash equilibrium which 
is sub-game perfect ( -SPNE) has been proposed in [11].   

VI. CONCLUSION AND FUTURE WORKS 

In this paper, the problem of IDS configuration in a 
Collaborative Intrusion Detection System (CIDS) has been 
taken into account. In this regards, a multi-player nonzero-sum 
stochastic game has been utilized to model the system and the 
interaction between attackers and IDSs. The solution concept of 
Stationary Nash Equilibrium has been used to describe the 
optimal strategies for defenders and expected behavior of 
attackers. The paper culminates by demonstration of the 
existence of a stationary Nash equilibrium for this game. Using 
the proposed game model, a game theoretic methodology to 
update configuration policies (strategies) can be developed. For 
future work, we intend to design a mechanism to IDSs in a 
CIDS by using the solution concept of Nash equilibrium in a 
prescriptive way.  
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