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Abstract— A two-time-scale guidance law is proposed for soft
landing on asteroids to recover the desired descent trajectory
in the presence of uncertainties due to inaccurate model of
the asteroid’s gravitational field as well as solar gravity and
radiation pressure. A high-gain observer estimates the uncer-
tainties over the faster time scale and a nonlinear controller
uses these estimates to cancel the effect of uncertainties over
the slower time scale. This way, the spacecraft trajectory will
converge to the desired one after a short transient phase. The
two-time-scale guidance law is compared with the terminal-
sliding mode control approach. The proposed method shows a
better transient behavior and requires smoother control signals
with lower amplitudes.

Index Terms— Spacecraft, soft landing, performance Recov-
ery, high-gain observer, sliding-mode control.

I. INTRODUCTION

Enhancing scientific knowledge, mitigating the impact
hazard, and utilizing extra-terrestrial resources are the driving
force for launching space missions aimed at minor planets,
asteroids, and comets in the Solar System [1], [2]. Data
collection in such missions, which is performed both remote-
ly and on the surface, calls for close-proximity maneuvers
including hovering and soft landing (i.e., landing with an
impact velocity of less than 3 m/s) [3]. As a successful
mission, in 2005, the Huygens probe softly landed on Titan
(Saturn’s largest moon) after parachute descending for about
2.5 hours [4].

Compared to planets, asteroids and comets are very small
objects with weak gravitational fields. Due to their irregular
shapes, the gravitational force they exert on a spacecraft
varies in both direction and intensity as a function of the
spacecraft’s location [5]-[8]. Hence, orbital trajectories can
be complex and non-periodic. Spacecrafts are also affected
by solar gravity as well as radiation pressure, and in effect
therefore stability is an issue that deserves special attention
[3]. Moreover, in order to guarantee a successful landing
mission, the spacecraft must be able to investigate the safety
of landing at the nominal site and in case of detecting a
hazard, maneuver to a new safe site [9].

Sophisticated controllers are needed to handle the decent
and landing phase of space missions. Such controllers must
provide high levels of autonomy, flexibility, and navigation
accuracy in guiding the spacecraft to the chosen landing site
on the asteroid. An additional constraint that must be taken
into account in the design and implementation of a desired
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trajectory is that the spacecraft must reach the desired point
with (almost) zero velocity. Moreover, robustness against
inaccurate models of the gravitational field, perturbations,
and unmodeled dynamics is quite critical for autonomous
landing [3].

Due to the robustness of sliding-mode (SM) control against
model mismatch, it provides the main idea behind a class
of nonlinear guidance algorithms for landing on asteroids
[10], [11]. This class of guidance algorithms is built on the
so called terminal sliding mode (TSM) control [12]. TSM
control was developed at the Jet Propulsion Laboratory (JPL)
in the early 1990s based on the notion of ferminal sliders,
which in turn, was inspired by the idea of terminal attractors
[13]. Finite-time convergence of states is guaranteed in TSM
control by designing the sliding surface as an attractor,
which is done by introducing a nonlinear term in the sliding
surface design. TSM control has been successfully applied
to nonlinear systems, whose state-space model has the form
of position-velocity equations. As an alternative to the TSM
control-based guidance, it was proposed in [3] to use multiple
sliding surfaces for generating desired trajectories, which
remain stable under bounded perturbations. The multiple-
sliding-surface guidance was inspired by the higher-order
sliding mode control theory [14].

Decision making and control in the presence of uncertainty
in a way to guarantee an acceptable level of performance for
all realizations that belong to a bounded uncertainty set has
been well addressed in the literature. However, an important
issue that deserves special attention is how to control the
performance degradation when the realization is outside the
considered uncertainty set [15]. In other words, there is
a need to move beyond robustness and aim at designing
antifragile systems. While a robust or resilient system is
supposed to resist shocks and stay the same, an antifragile
system must improve. Antifargile systems should be immune
against prediction errors. Moreover, in case of an adverse
event, the antifragile system must be able to quickly restore
its normal status and recover its normal performance [16].

As a step towards building antifragile systems, the problem
of interest may be viewed as a multi-stage finite-horizon
uncertain problem and extensions of robust methods may
be employed to solve it [15]. Following this line of thinking,
a two-time scale (TTS) control structure was proposed in
[17] for performance recovery. In the proposed structure, a
high-gain observer [18] is used to estimate the uncertainty.
Regarding the faster dynamics of the observer with respect
to the controller, the uncertainty estimates obtained by the
observer are employed by the controller to cancel the effect



of the perturbations in the system under control. This way,
after a fast transient mode, state trajectories of the perturbed
system will converge to the trajectories of the unperturbed
system, which is controlled by a nominal controller. Thanks
to a semi-global version of the separation principle [18], in
the presence of uncertain nonlinearities, the TTS controller
would be able to recover the trajectories, which are achieved
by a nominal controller; hence, the term performance recov-
ery [17].

Building on the idea of the TTS control structure, this
paper presents a two-time-scale nonlinear guidance algorithm
for soft landing on asteroids in the presence of uncertainties
due to inaccurate models of the asteroid’s gravitational
field, solar gravity, and radiation pressure. The performance-
recovery ability of the TTS guidance approach is evaluated
and compared with that of the TSM method. By computer
experiments, it is shown that the TTS method improves the
transient response and requires a much smoother control
input.

The rest of the paper is as follows. Formulation of the
descent and landing guidance problem is presented in Section
II. Section III is focused on the design of guidance laws for
both TSM and TTS approaches. It also includes the struc-
ture of the high-gain observer and the nominal controller.
Section IV presents the simulation results. Finally, the paper
concludes in Section V.

II. SYSTEM MODEL

For soft landing on an asteroid, the guidance law computes
a real-time acceleration command as the control input in a
way to force the spacecraft to follow a desired trajectory
and reach a target point on the asteroid’s surface with zero
velocity [3]. To be more precise, three coordinate frames
are considered: the asteroid coordinate system, 0, — Z4Yq2q,
whose origin coincides with the asteroid’s center of mass,
the landing coordinate system, o, — zpy¢z¢, Whose origin
coincides with the landing target point, and the body coor-
dinate system, o, — ZpYp2p, Whose origin coincides with the
spacecraft’s center of mass. Fig. 1 shows the geometric rela-
tionship between these three coordinate frames, where R, 6,
and A represent radius, latitude, and longitude, respectively.
It is assumed that the asteroid rotation speed is uniform with
the constant rate of revolution [0 0 w,]%.

A six-dimensional state vector is considered for the space-
craft, which includes positions and velocities along the three
coordinate axes, [z y z @ 9 2]7. Evolution of the spacecraft’s
state trajectories expressed in the landing coordinate frame
is governed by the following equations:

T = x4 (1)
Tz = x5

T3 = Tg

T4 = biws+bzwy +bsxz +ur + g1 +dy

g5 = —bixy — boxe +wrT2 + Uz + g2 + do

1.'6 = b2$5 + b5l’1 + b4l‘3 + usz + gs + d3

Fig. 1. Geometric relationship between the asteroid, landing, and body
coordinate frames.

where 1 = x,290 = y,x3 = 2,24 = T,T5 = Y,Tg = 2.
Also, [u; uz uz)T denotes the input vector and [d; do d3]”
represents the disturbance vector due to the solar gravity and
radiation pressure. The b; coefficients are defined as follows:

bi = 2wgsind 2)
by = 2wgcosb

by = w’sin®0

by = wicoszﬂ

bs = w?isinfcosh

It is worth noting that § = tan ' —-22 =. It is worth noting
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that § = tan~'—=%—. The vector [g1 g2 g3
xi+x

|7 represents
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the gradient of the gravitational potential, which in turn, can

be expressed as a series expansion of spherical harmonics

(51, [71:

V(R) = ?ZZ(%) Pon(sind) x  (3)

n=0m=0

[Crimcos(mA) + Spmsin(m)]

where Ry, G, and M denote the largest equatorial ra-
dius, gravitational constant, and asteroid’s mass, respectively;
P,,.’s are the Legendre polynomials; C.,,,’s, and Sp,,’s
are the associated coefficients, which are determined by the
mass distribution within the asteroid. Also, A = tcmfli—f.
Therefore, the state equation in (1) represents a nonlinear
system and a nonlinear guidance law is required. In order to
achieve soft landing, desired trajectories for descent altitude
and velocity (i.e., z4 and Z;) must be designed. A cubic
polynomial is considered for the altitude desired trajectory



[9]:
za(t) = ap + a1t + ast® + ast® )

that should satisfy the following initial and final conditions:

za(0) = 2o ®)
24(0) = 2

za(t) = 0

Zd(T) = 0.

where 7 is the descent time, which is finite.
In summary, the guidance law should force the spacecraft
error states

T
[€1 2 T3 — 24 Ta Ts Te — Zd) (6)

to go to zero. Next section is focused on how to design an
appropriate guidance law.

III. CONTROLLER DESIGN

Two nonlinear guidance laws for the state-space model in
(1) are presented in this section, which are built on two-time
scale and terminal sliding mode controllers.

A. Two-Time Scale Guidance Law

The nonlinear state equation in (1) can be rewritten in the
following compact form:

x =f(x) + G (u+4d(x)) @)

where 6(x) = g +d and Ggxz = [03x3 | Isx3]?. In this
form, the terms g¢;’s and d;’s are considered as uncertainty
terms, which should be estimated by the observer. The two-
time scale control structure has two main building blocks: a
nominal controller and a high-gain observer [17].

1) Nominal Controller: The state-space model in (1) has
the form of state-velocity equations. In order to simplify the
design of the nominal controller, the sixth-order system of
(1) is considered as three second-order systems and a one-
dimensional control signal is designed for each one of them.
Defining 21 = x1, 29 = x4, 23 = X2, 24 = T5, 25 = T3, and
z6 = Tg, the three second-order unperturbed systems will
have the following state equations:

21 = 3
Zo = birza+bsz +bszs + U

Zz = 24 ©)
24 = —bizo —bozg + w?lz;), + Us

Z5 = 2 (10)
26 = boza + b5z + bazs + U

Using the following three feedback-linearization control laws
for the above three systems,

U = —(b1z4 + ngl + b525) - /<E1Z1 - k222 (1m)
17,2 = _(_bIZQ — b226 + Wgzj) - kaj - k'4Z4 (12)
Uz = —(b224 + b521 + b425) - k525 - kGZG (13)

the following closed-loop dynamic equations will be ob-
tained:

21 = 2z (14)
Zo = —kiz1 —kozo
Zz = 24 (15)
24y = —kgzz3— kyzy
iy = 2 (16)
26 = —kszs — kezs

which are linear. The nominal controller is formed by the
control laws in (11), (12), and (13).
2) High-Gain Observer: The following observer is used

to estimate the unknown &(x) [17]:

. Of 1

A~ - G _ ke _

X=X + Gu - (X —x)
where the observer is initialized as X(0) = x(0). Then, based
on the uncertainty estimates obtained from the observer, the
nominal control signals of (11), (12), and (13) are corrected
as:

A7)

u:ﬁ—i—%GT(fi—x) (18)

where | denotes the pseudoinverse.

B. Terminal Sliding Mode Guidance Law

The formulation of the TSM guidance law for the system
in (1) is recalled from [11]:

up = —bies —bzer —bs(es + za) — 91 (19)
=By 'y e P sign(ér) — kasign(si)

uy = bieg+ba(es + fa) — woea — g
—B3 1z H|éa|* 12 sign(éz) — kasign(sa)

us = Zq—baes —bser —ba(es + zq) — g3

—B3 g tes P sign(és) — kasign(ss)
The sliding surfaces are designed as:

S1 = €1 —+ 61‘é1|71 Szgn(el) (20)
() + ﬂg\égpzsign(éﬂ
es + Bslés|?sign(és)

(1,2) for i =1,2,3.

S99 =

S3 =
where 5; > 0 and ~; €

IV. COMPUTER EXPERIMENTS

In this section, the performance recovery ability of the
proposed TTS guidance law in the face of uncertainties
is evaluated by computer experiments. Here, we adopt the
scenario presented in [10] and [11] for simulations and
compare the results obtained by the TTS guidance law with
those of the TSM guidance law in [11].

In the simulations, the parameter values are as follows. The
predetermined landing time is 7 = 4000s, the disturbance
terms are d; = 1.5sin2t, do = 1.6sinl.5t, and d3 =
1.4sin3t, the reference radius is Ry = 1.15km, the rotation



speed is w, = 27/10.54 rad/h, GM = 4.794 x 10~%, and
the initial state is

x(0) = [350 , 300, 2050, —1.2, 0.2, —1]7 (21)

The units are meter and meter per second for position and
velocity values, respectively. For the TSM, we choose 3; = 2
and v; = 1.5 for i = 1,2, 3.

Unlike the scenario considered in [11], the gravitational
force exerted on the spacecraft by the asteroid was consid-
ered as uncertainty. However, the gravitational force was
calculated from the gradient of the potential function in
(3) by considering the series expansion up to the fourth
harmonic. If a homogeneous triaxial ellipsoid is considered
as an approximation of the asteroid’s shape, then the potential
function will be quite simplified. With this approximation,
Snm = 0 for all n or m and Cp,, = 0 for any odd
n or m. The values of nonzero coefficients in the series
expansions are: Cyo = —0.113, C2 = 0.0396, Cyg = 0.068,
Cyo = —0.00323, and Cy4 = 0.000279.
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Fig. 2. Spacecraft state trajectories for positions for both terminal sliding

mode (TSM) and two-time scale (TTS) controllers.
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Fig. 3. Spacecraft state trajectories for velocities for both terminal sliding

mode (TSM) and two-time scale (TTS) controllers.
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Fig. 4. Deviation of spacecraft’s altitude and altitude rate from desired

trajectories for both terminal sliding mode (TSM) and two-time scale (TTS)
controllers.
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Fig. 5. Deviation of spacecraft’s altitude and altitude rate from desired
trajectories for the two-time scale (TTS) controller.

Position and velocity trajectories achieved by the two
guidance laws are respectively shown in Fig. 2 and Fig. 3
for the first hundred seconds of the descent phase. Deviation
of spacecraft’s altitude and altitude rate from target designed
trajectories are shown in Fig. 4 again for the first hundred
seconds of the descent phase. A zoomed portion of the
errors over time is shown in Fig. ?? for the TTS method.
It is obvious from the figures that the TTS guidance law
has improved the transient response compared to the TSM
method.

The control effort required by the two guidance laws are
compared in Fig. 6. Chattering is observed in the TSM
control signals. It can be seen that the TTS guidance law
needs much smoother control signals with lower amplitudes;
hence, the superiority of the TTS method over the TSM
controller. The sliding surfaces for the TSM controller are
also shown in Fig. 7 for the first hundred seconds of the



descent phase.

Fig. 8 depicts the three-dimensional trajectories of the
spacecraft from the initial point to the landing site over the
predetermined 4000-second descent time interval.
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Fig. 6. Control signals for both terminal sliding mode (TSM) and two-time
scale (TTS) controllers.
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Fig. 7. Sliding surfaces for the terminal sliding mode (TSM) controller.

V. CONCLUDING REMARKS

Soft-landing on small space bodies calls for sophisticated
guidance laws that are able to guarantee some acceptable
level of performance in the face of adverse events and
uncertainties. Such guidance laws must go beyond robustness
and control or slow down the performance degradation, when
the realization is outside of the uncertainty set that was
considered in designing controllers that provide a level of
robustness. This paper presented a two-time scale guidance
law that solves the problem in two stages. In the first stage,
the uncertainties are estimated over the faster time scale.
Then, the controller uses the obtained estimates to cancel

out the effect of uncertainties over the slower time scale. The
proposed method is able to recover the nominal trajectories
achieved by a nominal controller for the unperturbed system
after a fast transient. Compared to the terminal sliding
mode guidance law, the two-time scale method improves the
transient response with less control effort. Also, it requires
much smoother control signals.
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Fig. 8. The three-dimensional trajectory of the spacecraft for the terminal sliding mode control (dotted line) and the two-time scale control (solid line).



