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Abstract—This technical note aims at proposing an adaptive
control scheme for dual-user teleoperation systems in the pres-
ence of time-delay and dynamic uncertainty in the parameters.
The majority of existing control schemes for trilateral teleopera-
tion systems have been developed for linear systems or nonlinear
systems without dynamic uncertainty or time delay. However, in
the practical teleoperation applications, the dynamics equations
are nonlinear and contain uncertain parameters. In addition,
the time delay in the communication channel mostly exists in
the real applications and can affect the stability of closed loop
system. As a result, an adaptive control methodology is proposed
in this paper that can ensure the stability and performance of
the system despite nonlinearity, dynamic uncertainties and time
delay. Simulation results are presented to show the effectiveness
of the proposed adaptive controller methodology.

I. INTRODUCTION

By using teleoperation systems, a human operator has the
ability to safely handle dangerous or unapproachable environ-
ments. Owing to this ability, teleoperation systems are useful
in applications such as outer space, underwater explorations,
and handling poisonous materials. The reader is referred to
[1] for a historical survey. A more recent application of
teleoperation systems is robotic surgery in which it has several
features such as filtering tremor, scaling of position. and force,
and enhanced sensitivity. In a bilateral teleoperation systems
a single operator controls a master robot to send his desired
commands to a slave robot.

An important area of teleoperation systems is dual user
teleoperation systems where two human operators can carry
out a task cooperatively. Robotic tele-rehabilitation and sur-
gical training are considered as the main applications of
this systems. So far, several control architectures have been
proposed for dual user or multiuser teleoperation systems. In
[2], a robust H∞ controller is proposed for surgury training
in a dual user teleoperation system. The authority of the users
over the task is adjusted through a dominance factor according
to the their relative level of expertise. However, the proposed
methodology is a unilateral position-based architecture, which
means that no kinesthetic feedback is reflected back from the
environment to the users which is critical in aplications such as
telesurgery. Inspired by [2], a six-channel control methodology

is presented in [3] for a dual-user teleoperation system in the
absence of time delay which provides kinesthetic feedback
between both masters and the slave. In [4]), a criterion
for absolute stability of a dual user teleoperation system is
proposed based on the Llewellyns criterion [5]. In [6] a method
for stability analysis in dual-user linear teleoperation systems
is developed based on extended ZehebWalach (ZW) criteria
for absolute stability [7]. An important note is that, all of the
mentioned control methodologies for dual user teleopreation
does not consider dynamic nonlinearities of the robots which
is one of the most important complications in teleoperation
systems.

In addition to the above schemes for linear dual user
teleoperation, some control methods have been proposed for
nonlinear dual-user teleoperation. For instance, in [8], an
impedance control is proposed for a multiuser teleoperation
system. The closed-loop stability analysis is ensured utilizing
the small-gain theorem. Notwithstanding the fact that the pro-
posed methodology is developed for nonlinear teleoperation
systems, the stability of the whole system is not analysed in
the presence of nonlinear dynamics. As an illustration, the
presented methodology assumes that all the nonlinear terms
are known; therefore, a simple inverse dynamics is able to
eliminate all the nonlinearities. In [9] an adaptive nonlinear
controller scheme is proposed for dual-user teleoperation
system. However, the time delay in communication channel
is not considered in the stability analysis. In [10], a control
architecture is proposed for nonlinear dual user teleoperation
based on PD + d algorithm which is a generalization of
the control algorithm proposed in [11]. However, the tracking
performance of PD-based algorithm is not satisfactory when
the nonlinear dynamics become complicated.

This paper addresses the adaptive control design problem
for trilateral teleoperation in the presence of dynamic uncer-
tainties. For a single robot manipulator, several adaptive con-
trollers have been proposed to deal with dynamic uncertainties
such as [12], [13]. Up to now, several adaptive control schemes
have been proposed for bilateral teleoperation systems in
the presence of dynamic uncertainties. In [14], a general
nonlinear adaptive control scheme is presented to synchronize



the master and slave positions and velocities. Afterwards, it
was shown in [15] that the adaptive scheme proposed in [14]
is generally appropriate in the absence of gravity forces, and an
extended adaptive control algorithm is proposed to resolve this
problem. In [16], a control methodology is proposed which is
composed of an inner loop adaptive control and an outer loop
robust control to deal with both parametric and non-parametric
uncertainties.

Inspired by [12] and [13] as well as the adaptive controllers
presented in [14] and [15] for bilateral teleoperation, an
adaptive control scheme is proposed in this paper for dual-
user teleoperation in the presence of time delay. Our presented
methodology is mostly an extension of [15]. However, such
an extension is not straightforward owing to some reasons.
First, the proposed Lyapunov function candidate needs several
modifications to be useful for dual-user teleoperation system.
Besides, the analysis related to negative definiteness of the
derivative of Lyapunov function is more complicated in the
dual user case than in the single user case. In addition, the
convergence of tracking error cannot be easily verified. To the
best of our knowledge, no nadaptive control has been proposed
for dual-user nonlinear teleoperation in the presence of time
delay.

The rest of the paper is organized as follows. The dual user
teleoperation system and its control objectives are described in
Section II. Section III presents designing of adaptive controller
for the system in the presence of dynamic uncertainties.
Sections IV depicts simulation results. Finally, conclusions are
stated in Section V.

II. SYSTEM DESCRIPTION

Dual-user teleoperation systems include two master ma-
nipulators which are controllerd by human operators. The
commands exerted by the operators are sent to the slave robot.
In these systems, the authority of the the master manipulators
over the slave manipulator is defined by dominance factor
which will be discussed later. The connection between the
robotic manipulators are established through communication
channels. Note that, when the time delay in the communication
channel generally influence the stability of closed loop system.
Therefore, time delay should be considered in the stability
analysis. The schematics of a general dual user teleoperation
is shown in Fig. 1.

The following n-DOF dynamics are considered for the
master and slave robots [17]

Mm1(qm1)q̈m1 + Cm1(qm1, q̇m1)q̇m1 +Gm1(qm1)

= τm1 − τm1x

(1)

Mm2(qm2)q̈m2 + Cm2(qm2, q̇m2)q̇m2 +Gm2(qm2)

= τm2 − taum2x

(2)

Ms(qs)q̈s + Cs(qs, q̇s)q̇s +Gs(qs)

= τs − τsx
(3)

where qi ∈ Rn×1 are position vectors in joint space, Mi(qi) ∈
Rn×n are the inertia matrices, Ci(q̇i, qi) ∈ Rn×n are the
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Fig. 1: Dual user trilateral teleoperation

centrifugal and Coriolis matrices, Gi(qi) ∈ Rn×1 are the
gravity vectors, and τi ∈ Rn×1 are the control torque vectors
all for i = m, s1, s2 where the subscript i denotes the masters
for i = m1,m2 and slave robot for i = s. In addition,
τix represent the hand force of operators #1, #2 and the
environment force for i = m1, i = m2, and i = s respectively.

Some useful properties of the dynamic equations 1, 2, 3
are as follows ([17],[18])

Property 1. The inertia matrix Mi(qi) is symmetric and
positive definite for all qi ∈ R

Property 2. The matrix Ṁii(qi) − 2C(qi, q̇i) is skew sym-
metric which means that

xT
(
Ṁi(qi)− 2Ci(qi, q̇i)

)
x = 0 ∀x ∈ Rn (4)

Property 3. The left hand side of the dynamic models is
linear in a set of physical parameters

Mi(qi)q̈i + Ci(qi, q̇i)q̇i +Gi(qi) = Yi(qi, q̇i, q̇i, q̈i)θi (5)

the function, Y is called the Regressor and the Θ is the vector
of physical parameters.

Finally, the desired positions of the robots in task space are
defined as

qm1d(t) = α12qm2(t− T12) + α13qs(t− T13)

qm2d(t) = α21qm1(t− T21) + α23qs(t− T23)

qsd(t) = α31qm1(t− T31) + α32qm2(t− T32)

(6)

where αij are dominance factors which determine authority
sharing of masters and slave. αij should be selected such that
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Fig. 2: Desired positions of the manipulators according to
dominance factors

0 ≤ αij ≤ 1 and

α12 = 1− α13

α21 = 1− α23

α31 = 1− α32

(7)

In order to choose reasonable values for αij , some perfor-
mance metrics have been proposed in [19]. Fig. 2 shows
the architecture of the system with dominance factors. Note
that, our proposed architecture is a generalization of the one
considered in [3], [10] with some useful advantages. As an
illustration, just one and two parameter can be independently
determined in the previously proposed schemes, but three
independent parameters can be defined by the operators which
gives more freedom. As a case in point, supposing that one

of the operators want to only feel the feedback reflected from
the environment. In this case, the related parameters can be
independently defined without affecting the other parameters.

III. ADAPTIVE CONTROLLER DESIGN

In this section, the proposed adaptive control in the presence
of dynamic uncertainty is illustrated. The analysis are illus-
trated for one robot with subscript i described by the following
dynamic equation.

Mi(qi)q̈i + Ci(qi, q̇i)q̇i +Gs(qi)

= τi − τix
(8)

For the rest of this paper, i = 1, 2, and 3 denotes master #1,
master #2, and slave robot, respectively. Next, the error signal
in joint space is defined as

ei = qi − qid (9)

where qid is defined in (6). Afterwards, the variable ri is
defined as the new output.

ri = q̇i + Λiei (10)

where Λi is diagonal matrix of constant and positive values.
Then, the control law is given by

τi =− M̂i(qi)Λėi − Ĉi(qi, q̇i)Λei + Ĝi(qi)

−Kpri −Kdėi
(11)

where Kp and Kid are diagonal positive definit matrices
and M̂i(qi), Ĉi(qi, q̇i), and Ĝi are the estimates of their
corresponding matrices. Using property 3, we have

− M̂i(qi)Λėi − Ĉi(qi, q̇i)Λei + Ĝi(qi) =

Yi(qi, q̇i,−Λe,−Λė)θ̂i
(12)

where θ̂i is the estimate of parameter vector θi. Therefore, the
control law (11) can be written as

τi = Yi(qi, q̇i,−Λe,−Λė)θ̂i −Kpri −Kdėi (13)

Substituting the controller (11) on the dynamic equation (8)
and using (10) yields

Mi(qi)ṙi + Ci(qi, q̇i)ri +Kpri +Kdėi =

Yi(qi, q̇i,−Λe,−Λė)θ̃i − τix
(14)

where θ̃i = θ̂i − θi. The update law for uncertain parameter
vector is given by

θ̂i = −ΓiY
T
i (qi, q̇i,−Λe,−Λė)ri (15)

Theorem: For the teleoperation system (1), (2), and (3) in
free motion(τix = 0) with the desired positions defined by (6),
the adaptive control laws (11) and the parameter update law
(15) all the signals of the closed loop system are bounded.
Furthermore, position errors (ei) and velocities q̇i converge to
zero.



Proof: we consider the following Lyapunov-Krasovskii candi-
date functional for each robot

Vi = (
1

2
)
(
rTi (t)Mi(qi)ri(t) + θ̃Ti (t)Γ−1θ̃i(t)

+ ei(t)
T ΛKdei(t) +

∑
j 6=i

αij

∫ t

t−Tij

q̇Tj (s)Kdq̇j(s)ds
) (16)

Obviously, the above functional is positive definite and radially
unbounded in ri, θ̃i, and ei. Using (4), the time derivative of
Vi along the trajectories of (8) is given by

V̇i = −rTi (t)Kpri(t) + q̇i(t)
TKdėi(t)

+
∑
j 6=i

αij

(
q̇Tj (t)Kdq̇j(t)− q̇Tj (t− Tij)Kdq̇j(t− Tij)

) (17)

Note that

ėi(t) = q̇i(t)−
∑
j 6=i

αij q̇j(t− Tij) (18)

Therefore, (17) is equivalent with

V̇i = −rTi (t)Kpri(t)

−
∑
j 6=i

αij

(
q̇i − q̇j(t− Tij)

)T
Kd

(
q̇i − q̇j(t− Tij)

)
+ q̇i(t)

TKdq̇i(t)−
∑
j 6=i

αij

(
q̇Tj (t)Kdq̇j(t)

) (19)

Next, the following matrix is defined

Υ =

−1 α12 α13

α21 −1 α23

α31 α32 −1

 (20)

From (7), it is easy to see that det(Υ) = 0. Therefore, there
exists a vector β =

[
β1 β2 β3

]T
such that βT Υ = 0. To

be more specific, we can simply set β =
[
1 1 1

]T
and see

that βΥ = 0. Afterwards, inspired by [20] and [21], consider

V =

3∑
i=1

βiVi(t)

Therefore, using (19) we have

V̇ = −
3∑

i=1

βi
(
rTi (t)Kpri(t)

)
−

3∑
i=1

βi × ...(∑
j 6=i

αij

(
q̇i − q̇j(t− Tij)

)T
Kd

(
q̇i − q̇j(t− Tij)

))
+

3∑
i=1

βi
(
q̇i(t)

TKdq̇i(t)
)

−
3∑

i=1

βi

(∑
j 6=i

αij

(
q̇Tj (t)Kdq̇j(t)

))
(21)

Then, the following equation can be stated

V̇ = −
3∑

i=1

βi
(
rTi (t)Kpri(t)

)
−

3∑
i=1

βi × ...(∑
j 6=i

αij

(
q̇i − q̇j(t− Tij)

)T
Kd

(
q̇i − q̇j(t− Tij)

))
+ βT ΥQ

(22)

where
Q =

[
Kd(1)q̇21 Kd(2)q̇21 Kd(3)q̇21

]T
(23)

On the grounds that βT Υ = 0 the last term vanishes. As a
result, V̇ ≤ 0 which means that ri, ei, θ̃i ∈ L∞. By integrating
V̇ from 0 to t, we can conclude that ri ∈ L2. Thus, from (10)
and (9), we can say that ėi, q̇i ∈ L∞. Afterwards, from (14)
it is easy to conclude that ṙ ∈ L∞. Then, since ri ∈ L2

and ṙ ∈ L∞ by using Barbalat’s lemma, we conclude that
limt→∞ ri = 0.

On the other hand, with a similar reasoning which stated
for ri, we can say that ėi ∈ L2. Also, ėi, ṙi ∈ L∞ means that
q̈i, ëi ∈ L∞. Therefore, limt→∞ ėi = 0 which implies that ei
converges to a constant value. In addition,

lim
t→∞

|ri| = lim
t→∞

|q̇i + Λei| = 0

which means that limt→∞ q̇i = c where c is a constant value.
Then, we can say that

lim
t→∞

3∑
i=1

(

3∑
j=1,j 6=i

αij)ri = 3c

Since ri converges to zero so does c. Therefore, we have
limt→∞ |ei| = limt→∞ |q̇i| = 0. This means that the proof
is complete. �

IV. SIMULATION RESULTS

The proposed adaptive controller is utilized for position
synchronization of a dual user teleoperation system. Three
identical 2-DOF serial links with revolute joints are considered
as the master #1, master #2, and slave manipulators. Their
dynamic model is expressed in (8) It is possible to find the
components of dynamic model by using the Lagrange method
[17]. Thus, the inertia matrix is

M =

[
m11 m12

m12 m22

]
where

M11 =m1l
2
c1 +m2(l21 + l2c2 + 2l1lc2cos(q2)) + I1 + I2

M12 =M21 = m2(l2c2 + l1lc2cos(q2)) + I2

M22 =m2l
2
c2 + I2

Also, matrix C is stated as

C(q, q̇) =

[
hq̇2 hq̇2 + hq̇1
−hq̇1 0

]
where

h = −m2l1lc2sin(q2).



In addition, the gravity vector is expressed as

G =

[
(m1lc1 +m2l1)gcos(q1) +m2lc2gcos(q1 + q2)

m2lc2gcos(q1 + q2)

]
It is easy to verify the two first properties explained in Section
II. The third property is also satisfied with the following
regressor.

Y (q, q̇, q̇, q̈) =

[
q̈1 Y12 q̈2 gcos(q1) gcos(q1 + q2)
0 Y22 q̈1 + q̈2 0 gcos(q1 + q2)

]
in which,

Y12 =cos(q2)(2q̈1 + q̈2)− sin(q2)q̇2q̇2 − sin(q2)q̇1q̇2 − sin(q2)q̇2q̇1

Y22 =cos(q2)q̈1 + sin(q2)q̇1q̇1

Θ =


θ1
θ2
θ3
θ4
θ5

 =


m1l

2
c1 +m2(l21 + l2c2) + I1 + I2

m2l1lc2
m2l

2
c2 + I2

m1lc1 +m2l1
m2l2

 (24)

time (s)
0 5 10 15 20 25

H
u
m
an

fo
rc
es

(N
.m

)

0

1

2

3

4

5

6

7

Generalized human forces

τ
M1

τ
M2

Fig. 3: Torques exerted by the human operators

In the simulations, we set l1 = 1m and l2 = 1m and m1 =
m2 = 1kg for all three manipulators. The initial conditions
are considered to be q̈i(0) = q̇i(0) = qi(0) = 0. Besides we
take Λ = I and αjj = 0.5 for i, j = 1, 2, 3, i 6= j. Moreover,
the controlers’ gains are Kp = I and Kd = 3I , the adaptation
gain is set as Γ = I , and the time-delays in all channels are
set to be 0.2s.

The torques exerted by the human operators are shown in
Fig. 3. It is supposed that each operator exerts similar torques
to the two joints but the torques exerted by operator #1 are
different with that of operator #2. The desired and real values
of the three manipulators are shown in Fig. 4 and the tracking
errors are shown in Fig. 5. As the results show, the values of
tracking errors are considerable at the beggining moments of
simulation as compared to the next moments. Similar to the
general adaptive controllers, its interpretation is that the vector
of unknown parameters need some time to converge which
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Fig. 4: The desired and real values of joint positions for each
of the manipulators
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cause tracking errors to get larg values. For better clarification,
the parameter estimation of master #1 Manipulator is shown
in Fig. 6. Apparently, the estimated parameters get larger
variations at the beginning of simulation. Besides, as evident
from the results, after passing the transient time of adaptive
control, the real values of joint parameters track the desired
values with satisfactory performance.

V. CONCLUSIONS

This paper proposes an adaptive controller for position syn-
chronization of dual user teleoperation systems. The stability
of the closed-loop system is verified and the convergence of
tracking error is guaranteed in the presence of time delay
and parametric uncertainty. Through simulation results, the
effectiveness of the proposed approach in the sense of stability
and performance is demonstrated.

The proposed controller can just tolerate dynaimc uncer-
tainties in the parameters. In addition to the studied kind
of uncertainty, there are other kinds of uncertainties such as

kinematic and unstructured uncertainities that are widspread
in the real robotic applications. Our next step is to address
these kinds of uncertainties and to consider variations in time
delay and dominance factors.
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