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Abstract— Fault classification in distance protection of 

transmission lines, with considering the wide variation in the 

fault operating conditions, has been very challenging task. In this 

paper, an approach is presented to classify the fault in 

transmission line based on Empirical Mode Decomposition 

(EMD) using instantaneous power for each phase of only one 

terminal. For decision making stage of proposed methodology, 

three famous algorithms (Artificial neural network, support 

vector machine and decision tree) are used and it is shown that 

support vector machine demonstrate a suitable approach for 

selecting the faulty phase/phases. The results denote that 

suggested scheme is independent of effects of variation of fault 

inception angle, fault location, fault resistance, fault type and 

noise in current and voltage signals and also the proposed 

method is able to classify all the faults on transmission line within 

half cycle after the inception of fault.  

Keywords-Fault Classification; EMD; ANN; SVM; DT   

I.  INTRODUCTION  

Distance relaying of transmission lines requires fast and 
accurate detection, classification and location of faults to 
improve the stability and reliability of power system operation 
[1]. The objective of fault classification is to identify the type 
of fault and the faulted phase/phases, which is an important 
aspect of transmission line fault analysis. In a three phase 
transmission line, different types of faults are classified as: 
single line-to-ground fault (LG) , double line fault (LL), double 
line to-ground fault (LLG), three phase fault and three phase to 
ground fault. The occurrence of faults on transmission lines 
often results in severe problems. Therefore, fault detection and 
classification need to be done as accurately as possible leading 
to improved post-fault analysis, subsequently creating an easier 
task for inspection, maintenance, and repair of transmission 
line so that the line can be restored as soon as possible [2].  

As transmission systems are of large physical dimensions, 
conventional faulty phase selection schemes are found to be 
inadequate in protecting transmission lines when fault occurs. 
Several fault classification methods are presented in last few 
years and it shows the importance of transmission line 
protection. In [3, 4] authors use wavelet transform as a tool for 
classifying the faults in a test system. Although it is simple and 

powerful approach for mentioned purpose but it has some 
drawbacks due to their complexity and high computational 
tasks. Short Time Fourier Transform (STFT) is another attitude 
for protection of transmission line [5] however it can’t operate 
well in noisy environments which are a common situation for 
power system. S-transform is also used for transmission line 
fault analysis [6] and it is suitable method for extracting the 
features from current and voltage signals but authors in [7] 
show that this technique has some shortcomings which is why 
it does not reliable. Empirical Mode Decomposition (EMD) is 
a prevailing and appropriate scheme for signal processing in 
power system [8] to be precise a novel approach for detection 
and classification of faults in transmission line [9]. Artificial 
Neural Networks (ANNs), Support Vector Machines (SVMs) 
and Decision Trees (DTs) are three popular and useful 
approaches which are widely used in power system protection 
[10-12]. Usage of instantaneous power in [13] proves that it is 
a trustful way besides of current and voltage signal which is 
commonly used in recent studies. 

Considering the strengths and weaknesses of mentioned 
techniques, a novel fault type identification scheme based on 
EMD is proposed in this paper. In suggested method, first 
instantaneous powers of three phases are calculated then EMD 
is performed on half cycle window of post-fault power samples 
which the sampling frequency is 10 KHz. After that transient 
energy characteristics of Intrinsic Mode Functions (IMFs) 
which are derived from EMD feed to ANN, SVM and DT. 
Results for each mentioned decision making algorithms is 
evaluated for various fault scenarios (fault types, fault location, 
fault inception angle, fault resistance and noise in current and 
voltage signals). In the end a comparison is done and it is 
shown that SVM has the lowest error percentage in three 
mentioned algorithms for transmission line fault classification. 

II. METHODOLOGY 

A. Preliminaries 

The proposed methodology involves four major stages: 
feature extraction, feature selection, decision making 
algorithms and classification. The block diagram of fault 
classification system is shown in figure 1. The method 

Mohammad Amin Jarrahi, Haidar Samet and Ali Sahebi 

School of Electrical and Computer Engineering 

Department of Power and Control Engineering  

Shiraz University 

Shiraz, Iran 

Samet@shirazu.ac.ir 

 



presented in this paper utilizes instantaneous power signal as 
input which is derived from instantaneous voltage and currents 
of the given power system measurements. 
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Figure 1- Block diagram of fault classification procedure 

 
Once the voltage and current waveforms for various 

scenarios are obtained from one end of transmission line, 
instantaneous power for three phases are calculated as follows 
(the purpose of using instantaneous power is that it has both 
features of current and voltage signals): 
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Which in equation1 PA(t), PB(t) and PC(t) are instantaneous 
power of phase A, phase B and phase C in order. For detecting 
grounded faults from ungrounded ones, a feature is defined by 
usage of ground current and ground voltage that is described in 
following equation: 
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After distinguishing ground current (I0) and voltage (V0), 
feature for detecting grounded faults is defined as below that 
called ground instantaneous power (P0): 

0 0 0( ) ( ) ( )P t V t I t 
                                                          (3) 

In this paper, it is assumed that fault is detected and 
procedure of classifying the faults begins after that. For this 
purpose, PA(t), PB(t), PC(t) and P0(t) are acquired for half cycle 
after inception of fault. After that EMD is executed on them for 
feature extraction stage and signals are decomposed into mono 
component signals called Intrinsic Mode Functions (IMFs). For 
feature selection step transient energy characteristics of IMFs 
for different fault types is calculated and in decision making 
phase, ANN, SVM and DT are trained with energy 
characteristics of IMFs and results of them for classifying 
faults are compared with each other. In the normal operating 
condition of a power system, single phase instantaneous power 
is the sum of a dc and a sinusoidal component. If the frequency 
of the power system is f, the frequency of this sinusoidal 
component becomes 2f. Hence, by applying half-cycle, the 
recommended algorithm operates. In the following each step of 
proposed faulty phase selection scheme will be explained. 
Block diagram of proposed method is shown in figure 2.  

B. Empirical Mode Decomposition 

Empirical Mode Decomposition (EMD)  method is based 
on simple assumption that any data consists of different simple 
intrinsic mode oscillations. EMD uses sifting process for 
converting nonlinear and non-stationary signals into mono 
component and symmetric components. It breaks down given 
signal into its component Intrinsic Mode Functions (IMFs) [8].  
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Figure 2- Proposed method 

 

An IMF is defined as an oscillating wave which: 

1. Has only one extreme between zero crossings, and 

2. has a mean value of zero. 

Sifting is implemented iteratively for extracting IMFs from 
parent signal using following algorithm: 

1. Let m1 be the mean of upper and lower envelopes of 
given signal X(t), which are determined from a cubic-spline 
interpolation of local maxima and minima. The first 
component, h1 is calculated as shown in (4). 

1 1( )h X t m 
                                                                    (4) 

2. In next step, h1 is considered as the parent signal, and m11 
is the mean of h1’s upper and lower envelopes and h11 is 
calculated: 

11 1 11h h m 
                                                                       (5) 

3. Above procedure is repeated n times, until h1n satisfies 
the conditions of an IMF. Then it is designated first IMF, I1= 
h1n, It is then separated from rest of the data using (6). 



1 1( )R X t I 
                                                                     (6) 

4. Now R1 is considered as main signal and steps 1–3 are 
repeated for obtaining second IMF. 

5. The number of IMFs that can be extracted depends on 
the signal. The stopping condition is that the Rn becomes 
monotonic. 

If n orthogonal IMFs are obtained in this iterative manner, 
the original signal may be reconstructed as, 

( ) ( ) ( )i
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In this algorithm as shown in figure 3, EMD is used to 
decompose a complex signal into various time-scale or 
frequency components, the energy concept is used to weigh the 
importance of each frequency component. 

To construct the energy function at various frequencies to 
better represent the input signals, the concept of energy is 
utilized. The energy of one IMF component in the data window 
can be expressed as: 
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After introducing EMD, we compare it with classical time-
frequency analysis methods, such as STFT and wavelets as 
follows. 

(1) Although STFT can overcome the disadvantages of 
FFT-based methods in processing non-stationary signals, it 
produces constant resolution for all frequencies because it 
adopts the same window for the whole signal. This implies that 
if we want to obtain a good frequency resolution using wide 
windows, which is desired for the analysis of low-frequency 
components, we would not be able to obtain good time 
resolution (narrow window), which is desired for the analysis 
of high-frequency components. Therefore, STFT is suitable for 
the analysis of quasi-stationary signals instead of real non-
stationary signals. 
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Figure 3- EMD algorithm 

(2) Comparing with STFT, wavelets can be utilized to 
analyze multi-scale signals through dilation and translation, 
and extract time-frequency characteristics of the signals 
effectively. Therefore, wavelets are more suitable than STFT 
for analyzing non-stationary signals. Wavelets being non-
adaptive, however, have its own disadvantage that their 
analysis results depend on the choice of the wavelet base 
function. This may lead to a subjective and a priori assumption 
on the characteristics of the signal. As a result, only the signal 
characteristics that correlate well with the shape of the wavelet 
base function have a chance to produce high value coefficients. 
Any other characteristics will be masked or completely 
ignored. 

(3) Different from wavelets, EMD is a self-adaptive signal 
processing method. It is based on the local characteristic time 
scales of a signal and could decompose the signal into a set of 
IMFs. The IMFs represent the natural oscillatory mode 
embedded in the signal and work as the basis functions, which 
are determined by the signal itself, rather than predetermined 
kernels. Of course, EMD has weaknesses as well. For example, 
EMD produces end effects; the IMFs are not strictly orthogonal 
each other; mode mixing sometimes occurs between IMFs. In 
conclusion, each time-frequency analysis method suffers 
various problems. It is hard to say that one can always exceed 
others for any case. 

C. Artificial Neural Networks 

Artificial neural networks are computational paradigms 
based on mathematical models that unlike traditional 
computing have a structure and operation that resembles that of 
the mammal brain. Artificial Neural Networks (ANNs) or 
neural networks for short are also called connectionist systems, 
parallel distributed systems or adaptive systems, because they 
are composed by a series of interconnected processing 
elements that operate in parallel. Neural networks lack 
centralized control in the classical sense, since all the 
interconnected processing elements change or “adapt” 
simultaneously with the flow of information and adaptive rules. 
The application of artificial neural networks to discriminate the 
fault has given a lot of attention recently. Neural networks are 
typically organized in layers. Layers are made up of a number 
of interconnected 'nodes' which contain an 'activation function'. 
Patterns are presented to the network via the 'input layer', 
which communicates to one or more 'hidden layers' where the 
actual processing is done via a system of weighted 
'connections' [10]. The hidden layers then link to an 'output 
layer' where the answer is output as shown in figure 4. 
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Figure 4- ANN structure 



D. Support Vector Machine 

       In machine learning, support vector machines (SVMs) are 

supervised learning models with associated learning 

algorithms that analyze data and recognize patterns, used for 

classification and regression analysis. Given a set of training 

examples, each marked for belonging to one of two categories, 

an SVM training algorithm builds a model that assigns new 

examples into one category or the other, making it a non-

probabilistic binary linear classifier. An SVM model is a 

representation of the examples as points in space, mapped so 

that the examples of the separate categories are divided by a 

clear gap that is as wide as possible. As shown in figure 5 new 

examples are then mapped into that same space and predicted 

to belong to a category based on which side of the gap they 

fall on [11]. The SVM technique has been implemented in a 

MATLAB environment using the Lib-SVM toolbox. 

 

 
Figure 5- Example of SVM 

 

E. Decision Tree 

      One of the attractive approaches in decision making 

methods is the decision tree (DT). The DT method provides a 

white box model for the classifier, that is, it has the advantage 

of revealing the entire process of decision making by 

interpreting the rules and constructing an appropriate 

framework to quantify the values of outcomes and the 

possibilities of achieving them. The DT, irrespective of the 

procedure used for creating the tree, has two stages: training 

and testing. In the first stage, after exact simulation of the 

entire system under different conditions, the input features, 

with known relevant output classes, are fed to the decision-

tree algorithm. In the tree-building process, different criteria 

are used for evaluating the effect of input features in 

determining the output classes [12]. A typical DT is shown in 

figure 6. 
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Figure 6- Typical DT 

III. SYSTEM UNDER STUDY 

The proposed algorithm is applied to a power system 
shown in figure 7. The system parameters are as follows: 

 Generators: rated line to line voltage is 20kV, three-phase 
short-circuit power is 1000MVA, frequency is 50Hz, X/R 
ratio is 10. The voltage phase angle of generator 1 and 2 are 
0 and -10 degree, respectively. 

 Transformers: rated power is 600MVA; voltage ratio is 
20/230kV with delta-star-grounded connection, with 
0.002+j0.1 pu impedance. 

 Lines: All of line impedances are 0.02+j0.15Ω/km with 
negligible capacitance. Line 1-2, 2-3, 3-4, 4-1, and 5-2 are 
50, 35, 60, 20, and 25 kilometer, respectively. 

 Loads: rated line to line voltage is 20kV, frequency is 
50Hz. The active and reactive power of load 1 is 500MW 
and 100MVAr, respectively. The active and reactive power 
of load 2 is 100MW and 50MVAr, respectively. 

The simulation time step is set to 100μs which makes 200 
samples per cycle in a 50Hz system (sampling frequency is 10 
KHz). 
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G2

Bus1 Bus2 Bus5

Bus4 Bus3

Load1

Load2

V, i

Figure 7- Test system 

IV. SIMULATION AND RESULT 

   In order to evaluate the performance of proposed method, the 
fault is applied to line 1-2 and more than 1000 scenarios in 
different conditions are simulated. The case studies include: 
different fault types, different fault locations, different fault 
inception angles and different fault resistance. Signals that are 
used to identify the type of fault are the measured three phase 
currents and voltages at the relay point of line 1-2. For each 
case study, energy characteristics of IMFs are calculated. In 
following sections EA, EB and EC represents mentioned index 
for each phase instantaneous power (in order phase A, B and 
C) and E0 signified ground instantaneous power energy of 
IMFs. After calculating EA, EB, EC and E0 for each case study, 
performance of ANN, SVM and DT will be deliberated. 

A. Case 1: Various fault types 

  A fault is applied at the middle of line 1-2. This fault starts at 

0.206s. In this test case, it is assumed that the fault and also 

the ground have a very small resistance. For each type of fault, 

energy of IMFs is calculated in table I. It is obvious that 

energy of IMFs for faulty phase is bigger than healthy phase, 

and also E0 is a significant value for grounded faults and it is a 

negligible amount for ungrounded ones.  



Table I. Energy of IMFs for various fault types 

 EA EB EC E0 
A-G 15.4  105 8.1  103 7.5  103 4.6  103 

B-G 6.3  103 14.7  105 5.7  103 4.1  103 

C-G 6.7  103 7.1  103 12.7  105 3.9  103 

A-B 11.3  105 12.8  105 8.1  103 0.98 

A-C 8.7  105 8.1  103 9.7  105 2.09 

B-C 5.2  103 10.1  105 10.3  105 1.15 

A-B-G 12.5  105 11.9  105 7.2  103 3.7  103 

A-C-G 10.7  105 6.5  103 10.9  105 5.5  103 

B-C-G 9.2  103 11.1  105 13.5  105 5.9  103 

A-B-C 14.2  105 13.8  105 12.9  105 3.42 

 

B. Case 2: Various fault resistances 

  In this case, effect of fault resistance (Rf) between 10 Ω to 

100 Ω is studied for the test system. To verify this behavior, 

consider the previous test case but this time the fault resistance 

is not negligible. Table II shows the results of IMF’s energy 

for this case study for 10 Ω and 100 Ω fault resistances. 

 
Table II. Energy of IMFs for various fault resistances 

 Rf EA EB EC E0 

A-G 

10 Ω 11.2  105 6.8  103 7.3  103 3.8  103 

50 Ω 10.7  105 5.2  103 6.9  103 3.5  103 

100 Ω 10.1  105 5.9  103 7.1  103 3.1  103 

A-B 

10 Ω 9.6  105 8.8  105 6.7  103 0.78 

50 Ω 8.9  105 8.2  105 6.1  103 1.52 

100 Ω 8.2  105 7.7  105 5.5  103 1.44 

A-B-
G 

10 Ω 10.2  105 10.5  105 5.9  103 4.1  103 
50 Ω 9.4  105 9.8  105 5.7  103 3.2  103 

100 Ω 8.7  105 9.2  105 5.4  103 2.9  103 

A-B-
C 

10 Ω 13.4  105 14.2  105 13.1  105 1.08 

50 Ω 12.7  105 13.5  105 12.3  105 0.98 

100 Ω 12.1  105 12.8  105 11.7  105 1.27 

 

C. Case 3: Various fault inception angle 

   Moment of fault inception as known fault inception angle 

(tf) in transmission line protection methods is considered in 

this case. For brevity only one type of each fault category is 

shown in table 3. As it is obvious from Table III, effect of tf is 

a considerable topic in energy of IMFs. 

 

 

Table III. Energy of IMFs for various fault inception angle 

 tf EA EB EC E0 

A-G 

00 10.8  105 6.5  103 6.5  103 2.9  103 

450 11.8  105 7.2  103 6.9  103 2.5  103 

900 12.6  105 7.9  103 7.8  103 1.9  103 

A-B 

00 9.6  105 8.8  105 5.8  103 1.1 

450 9.9  105 9.2  105 6.9  103 1.45 

900 10.7  105 9.7  105 8.1  103 2.13 

A-B-G 

00 10.2  105 10.5  105 6.2  103 2.9  103 

450 10.9  105 11.8  105 6.8  103 2.2  103 

900 11.7  105 12.2  105 7.7  103 1.8  103 

A-B-C 
00 13.4  105 14.2  105 13.1  105 1.77 

450 13.7  105 14.5  105 14.3  105 1.15 

900 14.1  105 14.8  105 14.7  105 0.87 

D. Case 4: Various fault locations 

One of the other problems that should be considered for a fault 

identification technique is the location of the fault (d) in the 

transmission lines. This test case studies this subject by the 

proposed algorithm. The system is analyzed with a fault 

applied at 30%, 60% and 90% of the transmission line. The 

fault resistance of 50Ω is considered and results of three types 

of faults for brevity are shown in Table IV. 

 

Table IV. Energy of IMFs for various fault locations 

 d EA EB EC E0 

A-G 

30% 13.5  105 5.6  103 4.3  103 3.3  103 

60% 12.7  105 5.1  103 4.1  103 3.1  103 

90% 11.3  105 4.3  103 3.6  103 2.7  103 

A-B 

30% 9.6  105 9.2  105 5.1  103 1.55 

60% 8.9  105 8.7  105 4.5  103 1.92 

90% 8.2  105 8.1  105 3.7  103 2.77 

A-

B-G 

30% 10.2  105 11.2  105 8.6  103 4.5  103 
60% 9.4  105 10.5  105 7.9  103 4.8  103 
90% 8.7  105 9.9  105 7.2  103 4.9  103 

A-

B-C 

30% 13.4  105 13.2  105 14.1  105 1.44 

60% 12.7  105 12.5  105 13.5  105 0.49 

90% 12.1  105 11.9  105 13.1  105 2.76 

 

E. Case 5: Noise in voltage and current signals 

Current and voltage waveforms measured from real power 
systems usually contain noise. Therefore, noise is added to the 
measured signals in order to simulate noise conditions occurred 
in real power systems. Three different noisy situations with 20, 
30 and 40 dB Signal to Noise Ratio (SNR) values for 
instantaneous powers are apprehended. Any SNR value of a 
signal is calculated as in equation 9: 

10log ( )s

n

P
SNR dB

P

 
  

                                                   (9) 

where Pn is the power of the noise and Ps is the power 
(variance) of the signal. A peak noise magnitude of nearly 
3.5% of the voltage signal is equivalent to a typical SNR value 
of 30 dB [14]. In Table V results of energy for IMFs in noisy 
condition is shown. 

 

Table V. Energy of IMFs for various noise SNRs 

 noise EA EB EC E0 

A-G 

20dB 14.7  105 10.1  103 9.7  103 8.9  103 

30dB 15.6  105 10.7  103 10.3  103 9.9  103 

40dB 15.9  105 11.8  103 11.6  103 10.7  103 

A-B 

20dB 12.5  105 15.6  105 8.8  103 12.5 

30dB 13.7  105 15.9  105 9.5  103 23.6 

40dB 14.3  105 16.5  105 10.3  103 54.8 

A-

B-G 

20dB 11.8  105 15.5  105 9.8  103 11.7  103 
30dB 12.6  105 16.8  105 10.6  103 12.9  103 
40dB 13.1  105 17.2  105 11.5  103 14.1  103 

A-

B-C 

20dB 15.4  105 17.2  105 16.5  105 52.9 

30dB 15.8  105 18.5  105 17.1  105 68.7 

40dB 16.6  105 18.8  105 17.9  105 74.1 

  



 After knowing the energy of IMFs, a decision making 
technique should be implemented to identify type of fault. In 
this paper for each method, a well-known strategy that used by 
other authors in recent papers is considered. For ANN, the 
Radial Basis Function (RBF) network with Levenberg-
Marquardt back-propagation training algorithm [10] is 
selected. For SVM, One Versus One (OVO) multiclass method 
[11] is utilized and for DT, Random Forest (RF) algorithm [12] 
is used for classification, where a user-defined number of trees 
are created. 

Table VI. Comparison between decision making algorithms 

 ANN% SVM% DT% 

Rf 95% 99% 96% 

tf 91% 100% 92% 

d 90% 99% 93% 

noise 80% 98% 87% 

General 89% 99% 91.2% 

 

    As it shown in Table VI, SVM is the best decision making 
algorithm among those three which can be used for fault type 
identification in transmission lines. 

   Using ANNs for classification has several disadvantages. As 
the first disadvantage, the error function is multimodal, which 
includes many local minima. Thus, the learning process of this 
classifier can face problems. The SVM evolved from theory to 
implementation and results, whereas ANN follows heuristic 
path from applications to experiments. Also, SVMs are less 
prone to over fitting problems and give sparse solution when 
compared to ANN and DT which they do not depend on input 
space dimensionality.  

V. CONCLUSION 

In this paper, a novel application of EMD for fault 
classification in transmission line is suggested. The proposed 
method uses only half cycle of instantaneous power for each 
phase and it only requires data from one side of protected line. 
Energy of IMFs are fed to three popular decision making 
networks and after a comparison between them, SVM was the 
appropriate choice for identification of faulty phase/phases. 
The influence of different parameters of the transmission line 

and the characteristics of the proposed procedure are 
investigated and represented, where the generalization 
capability and robustness of the proposed scheme are proven. 
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