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Abstract—In this paper, a new symbol timing recovery is proposed 

that is suitable for burst transmission scheme. It is assumed that 

the channel is an Additive White Gaussian Noise one and the 

transmitted data is unknown at the receiver. The contribution of 

the paper is exploiting Gardner Timing Error Detection (TED) 

algorithm for None-Data-Aided (NDA) timing delay estimation in 

an iterative manner. It is shown that the estimated delay also 

maximize the log-likelihood function. The algorithm is suitable for 

different types of linear modulations such as PSK, QAM. 

Simulation results confirm the algorithm convergence to the 

maximum of the likelihood function and a good performance in 

terms of Mean Square Error (MSE). The proposed timing 

recovery algorithm is bandwidth efficient which does not claim 

any pilot symbols and proceeds without using preamble. The 

algorithm is capable of recovering all symbols of a short burst 

transmission and is practically easy to be implemented.   

Keywords-symbol timing recovery; burst mode; Gardner timing 

error detection 

I.  INTRODUCTION  

Any practical receiver has to estimate synchronization 
parameters in order to perform accurate detection of received 
signal. Timing recovery or timing synchronization is a major 
task in all the digital communication systems. At the receiver, 
the timing information is used to decide when the incoming 
signal has to be sampled and what the transmitted symbols are. 
Extensive work on timing recovery methods has been done in 
the literature, see [1] for more details. 

Symbol timing recovery may be done through an error 

tracking synchronizers. The general structure of a error tracking 

synchronizer is based on a closed loop feedback, which is 

controlled by an error generated from Timing Error Detector 

circuit. This structure finally brings the system to a tracking 

mode. The transition between initial state and tracking mode is 

called acquisition. In a case of burst communications, the main 

drawback of this approach is that: an accurate acquisition would 

be time consuming process so that the major part of the burst 

remains unrecovered during achieving a stable equilibrium 

point, or even in the case of short burst that the number of 

symbols per burst is so small, acquisition may need more 

symbols than received burst sequence’s symbols. In this case we 

can make the acquisition more agile but performance of system 

prone to severe degradation. As a result, applying error tracking 

synchronizers for a burst sequence, is not reasonable. 

Iterative symbol timing recovery during the last decade has 
been an attractive approach for timing recovery [2-4]. This is 
mainly due to the fact that it provides a numerical solution for 
the conventional means of unknown parameter estimation, 
Maximum Likelihood (ML) approach. As we will see later, the 
complexity of a direct computation based on ML criteria is 
inevitable [5], [6]. Also the general frame work of the iterative 
synchronization prevents symbol loss, which is a prevalent 
problem in error tracking synchronizers. Based on iterative 
structure first, timing delay is estimated then, the estimated delay 
is used by sampler to justify its sampling time and to generate 
new samples. This process proceeds iteratively. 

In accordance with the above statements, the main idea 

introduced in this paper is to derive a practical timing recovery 

algorithm easy to implement, useful for burst communication 

and suitable for linear modulations. In order to improve spectral 

efficiency, timing synchronization for burst sequence is done 

through NDA estimator [7], [8]. Following this idea, Gardner 

TED is used which is able to exploit timing information 

contained in the received burst sequence independent of carrier 

and phase offset [9], [10]. This information is then delivered to 

the sampling block to resample the burst sequence. As a 

consequence the symbol timing error moves towards decreasing 

and all symbols of the burst can be recovered.  
The rest of the paper is organized as follows; the general 

mathematical expression relating timing estimator to the ML 
solution is given in section II. And finally, we assess the 
performance of the proposed algorithm and analyze it in section 
III.  

II. ALGORITHM DERIVATION 

A. Signal model 

Consider a burst transmission scheme where a sequence of 

bits is mapped onto a special constellation. Each complex 

symbol of the constellation, 𝑎𝑘  is shaped by pulse shaping 

filter  ℎ(𝑡)  to produce a signal of  𝐾  symbols. The resulting 

transmitted signal is: 



𝑥(𝑡) =  ∑ 𝑎𝑘ℎ(𝑡 − 𝑘𝑇)

𝐾−1

𝑘=0

 (1) 

 

In traditional Communication system, conventional 

corruption to the transmitted signal during passing through 

channel is unknown timing delay and additive white Gaussian 

noise. So the received signal can be modeled as: 

𝑟(𝑡) = 𝑥(𝑡 − 𝜏) + 𝑤(𝑡)  

𝑟(𝑡) =  ∑ 𝑎𝑘ℎ(𝑡 − 𝑘𝑇 − 𝜏)

𝐾−1

𝑘=0

+ 𝑤(𝑡) (2) 

 

Where 𝜏 is an unknown timing delay and 𝑤(𝑡) is additive 
white Gaussian noise with pass band two-sided power spectral 
density 𝑁0/2 and ℎ(𝑡) is a root raised cosine filter. 

B. Likelihood function derivation 

Suppose 𝐫  is a vector of sampled received signal  𝑟(𝑡) . 

Clearly the optimal receiver detects the transmitted symbols 

based on maximizing  𝑝(𝑎𝑘|𝐫 ). In the absence of unknown 

synchronization parameter, 𝐫 contains sufficient information to 

straight forward computation of maximum likelihood function. 

However in practical receivers the presence of one or more 

unknown parameter causes a complex computation of optimal 

symbol detection. In our problem, the unknown synchronization 

parameter is  𝜏 . To explain the above statement precisely, 

suppose: 

Λ(𝐫|𝐚, 𝜏) = arg max 𝑝( 𝐫|𝐚, 𝜏) 

𝑎 , 𝜏 
(3) 

 

 Where Λ(𝐫|𝐚, 𝜏)  denotes for likelihood function of 

observed data 𝐫  conditioned on 𝐚  (vector of transmitted 

symbols) and 𝜏. According to the ML criteria, maximizing of 

Λ(𝐫|𝐚, 𝜏) with respect to each parameter 𝐚 or 𝜏 impose a joint 

detection and estimation of 𝐚 and 𝜏. As far as symbol detection 

is concerned, ML function dependency to unknown 

synchronization parameter, can be removed by marginalizing 

ML function [1], [7]. 

Λ(𝐫|𝐚) =  𝐸𝜏 {Λ(𝐫|𝐚, 𝜏)} (4) 

Λ(𝐫|𝐚) =  ∫ Λ(𝐫|𝐚, 𝜏) 𝑓(𝜏) 𝑑𝜏
1

𝜏

 (5) 

 

To avoid the challenging computation of integral over 

unknown synchronization parameter in (5) and without loss of 

generality, 𝜏 is considered as a static variable, which is unknown 

but deterministic. Therefore, there is no useful probabilistic 

information except that they are in a given region. In this case 

Λ(𝐫|𝐚) can be written as [1]: 

Λ(𝐫|𝐚) =  Λ(𝐫|𝐚 , 𝜏 = 𝜏̂)   (6) 

 

Where 𝜏̂ is an accurate estimation of timing synchronization 
parameter that can be achieved in turn through following 
equation: 

𝜏̂ = arg max 𝑝(𝐫|𝐚, 𝜏) 

𝜏 
(7) 

Generally, the optimum receiver has to estimate timing delay 

based on maximizing the joint likelihood function 𝑝(𝐫|𝐚, 𝜏) and 

then select the sequence 𝐚  with the largest likelihood. The 

conventional approach of estimating 𝜏  through (7) is to 

maximize 𝑝(𝐫|𝐚, 𝜏)  with respect to 𝜏  for each possible 

𝐚. Although there is finite number of possible sequence, but this 

exhaustive search method impose a lot of computation and is not 

practical especially when the length of the burst increases. To 

cope with this limitation iterative algorithm is applied. 

C. Problem formulation 

Conditional probability density function of received 𝑟(𝑡) 

signal is: 

𝑝(𝑟(𝑡)|𝐚, 𝜏) =  𝐶 exp(
−1

2𝜎2
 ∫ |𝑟(𝑡) − ∑ 𝑎𝑘ℎ(𝑡 − 𝑘𝑇 − 𝜏)

𝑘

|

2

𝑑𝑡
2

𝑇0

 (8) 

 

Where 𝑇0 is the observation interval. The constant values in 

(6) can be dropped in likelihood function. Without any loss of 

generality we can maximize the log likelihood function 

Λ𝐿(𝑟(𝑡)|𝐚, 𝜏)  instead of  Λ(𝑟(𝑡)|𝐚, 𝜏) . The log-likelihood 

function is: 

Λ𝐿(𝑟(𝑡)|𝐚, 𝜏) =
−1

2𝜎2
 ∫ |𝑟(𝑡) − ∑ 𝑎𝑘ℎ(𝑡 − 𝑘𝑇 − 𝜏)

𝑘

|

2
1

𝑇0

𝑑𝑡 (9) 

 

Expanding (9), the terms ∫ |𝑟(𝑡)|20

𝑇0
𝑑𝑡 and  ∫ |∑ 𝑎𝑘ℎ(𝑡 −𝑘

9

𝑇0

𝑘𝑇 − 𝜏)|2 𝑑𝑡  are independent of 𝜏 and can be dropped [6]. By a 

little manipulation we come to the following equation: 

Λ𝐿(𝑟(𝑡)|𝐚, 𝜏) =  ∑ 𝑅𝑒 {𝑎𝑘
∗ ∫ 𝑟(𝑡)ℎ∗(𝑡 − 𝑘𝑇 − 𝜏)𝑑𝑡

2

𝑇0

}

𝐾−1

𝑘=0

 (10) 

  

As it was mentioned, maximizing (10) with respect to 𝜏 for 

each possible transmitted sequence, is practically intractable. In 

order to maximize ML function, one may resort to Gardner 

timing delay estimation. Suppose 𝜏̂  is the estimated timing 

delay, achieved through Gardner TED. It is proved that 𝜏̂ is also 

the solution of maximizing (10) [11]. 

According to Gardner TED input signal should be sampled 

at the rate of twice the symbol rate. Using the estimated timing 

delay, the corresponding samples generate in 
𝑖𝑇

2
+ 𝜏̂  timing 

position. For sampled data by the consideration of Nyquist 

theorem; the integration can be replaced by summation. 



Λ𝐿(𝐫|𝐚, 𝜏) =  ∑ 𝑅𝑒 {𝑎𝑘
∗ ∑ 𝑟 (

𝑖𝑇

2
+ 𝜏̂ ) . ℎ∗(

𝑖𝑇

2
+ 𝜏̂ − 𝑘𝑇 − 𝜏))

𝑖𝑇
2  ∈ 𝑇0

}

𝐾−1

𝑘=0

 (11) 

 

Eq. (11) is interpreted as matched filter output [6]. Clearly 

timing error is proportional to gradient of likelihood function 

with respect to 𝜏 i.e.:  

                    𝑒 ∝   {−
𝜕Λ𝐿(𝐫|𝐚, 𝜏)

𝜕𝜏
|𝜏 = 𝜏̂} (12) 

=  ∑ 𝑅𝑒 {𝑎𝑘
∗ ∑ 𝑟 (

𝑖𝑇

2
+ 𝜏̂ ) . ℎ′∗

(
𝑖𝑇

2
− 𝑘𝑇)

𝑖𝑇
2

 ∈ 𝑇0

}

𝐾−1

𝑘=0

 (13) 

 

Where, 

                    ℎ′(𝑡) =
𝑑

𝑑𝑡
 ℎ(𝑡)  

 

In (13) summation goes through all symbols of a received 

burst sequence. For each individual symbol the generated timing 

error is: 

𝑒𝑖 =  𝑅𝑒{ 𝑟 (
𝑖𝑇

2
+ 𝜏̂ ) ∑ 𝑎𝑘 

∗  ℎ′∗
(

𝑖𝑇

2
− 𝑘𝑇)} 

𝑘

 (14) 

 

It has been proved in [10] that for the pulse shaping filters 

such as square-root raised cosine, the timing error only exists 

for odd 𝑖, if 𝑚 equivalently represents 
𝑖+1

2
, (14) can be written 

as: 

𝑒𝑚 =  𝑅𝑒{  𝑟 ((𝑚 −
1

2
) 𝑇 + 𝜏̂  ) ( 𝑎𝑚

∗ − 𝑎𝑚−1
∗ ) } (15) 

 

Replacing 𝑎𝑚
∗  by 𝑟∗(𝑚𝑇 + 𝜏̂  ) , which is a suboptimal 

estimation of  𝑎𝑚
∗

 results to exact Gardner Timing Error 

Detector.  

𝑒𝑚 =  𝑅𝑒{ 𝑟 ((𝑚 −
1

2
) 𝑇 + 𝜏̂  ) (𝑟∗(𝑚𝑇 + 𝜏̂  ) − 𝑟∗( (𝑚 − 1)𝑇 +  𝜏̂  ) )}     (16) 

Figure.1 simple block diagram of proposed algorithm 

 

Total timing error is achieved by making summation over 

all symbols of a burst. 

𝑒 =  ∑ 𝑒𝑚

𝑚𝑇∈𝑇0

 (17) 

And timing delay estimation is update each time trough 

following equation: 

𝜏̂𝑙 =  𝜏̂𝑙−1 +  𝑒 (18) 

Where 𝑙  represents the iteration number. So, approximation 

of Gardner timing error for each symbol and make summation 

over all symbols of a burst consequently maximize the 

likelihood function. This procedure can be summarized in the 

following steps: 

 First initializing 𝑙 = 1  and 𝜏̂0 = 0  for prior applying 
Gardner algorithm on captured samples of a matched 
filter output to generate 𝜏̂𝑙 . 

 Substituting last value of   𝜏̂𝑙  in (11), to correct the 
sampling time and produce new samples. 

 Using (16-18) to update 𝜏̂𝑙 by the captured samples of 
pervious section. 

 Check for convergence, if  𝑒 < 𝜀 and 𝜖 ≅ 0, the output 
is the latest estimation of modulation sequence, 
otherwise repeat the procedure from second step. 

A simple block diagram of the system is shown in fig.1. 

III. SIMULATION RESULTS 

To illustrate the applicability of the introduced system, the 

simulation results are presented in this section. System’s 

performance is analyzed in terms of mean squared error (MSE) 

which is averaged over 1000 Monte Carlo iterations. 

Simulations are carried out with linear modulations such as: 

BPSK, QPSK, 8PSK, 16QAM and 32QAM. The roll-off factor 

and the burst length are  𝛼 and 𝑁 respectively. Timing recovery 

initially starts by 𝜏 = 0.5𝑇 offset, which is the worst case in our 

problem. The up-sampling factor is set to 10 and new symbols 

are obtained via linear interpolation at the end of each iteration. 

The synchronizer operates with no need of prior carrier and 

phase synchronization and without any pilot symbols as a 

preamble.  

Fig.2 displays the mean square error of proposed algorithm 

in terms of SNR per bit (𝐸𝑏/𝑁0) for different linear modulation 

types. Burst length and 𝛼 are equal to 100 and 0.5. As expected, 

performance improves as 𝐸𝑏/𝑁0increases. Another result which 

is pointed out from this figure is that the performance of the 

algorithm gets better for increasing modulation order. This is 

mainly due to this fact that reliable timing error in Gardner’s 

method usually would be obtained for the symbols of different 

amplitude (mostly for zero crossing symbols).  



 

Fig.2 MSE vs 𝐸𝑏/𝑁0, 𝛼 = 0.5, 𝑁 = 100 

 

Fig.3 MSE vs 𝑁 𝛼 = 0.5, 𝐸𝑏/𝑁0 = 20 db 

 

Fig.4 MSE vs 𝑁 𝛼 = 0.5, 𝐸𝑏/𝑁0 = 7𝑑𝑏 

 

 

 

 

Fig.5 MSE vs Roll-Off 𝑁 = 100, 𝐸𝑏/𝑁0 = 10 

 

Fig.6 MSE vs 𝐸𝑏/𝑁0, for different iteration number, 𝑁 = 100 𝛼 =
0.35, modulation type: QPSK and limited iteration number. 

As the modulation order increases the probability of 

dissimilar successive symbols increases. Therefore, more valid 

timing errors would be generated that improve the system 

performance.  

     Fig.3 and 4 present the MSE as a function of burst length (N) 

for 𝛼 = 0.5 and two different values of 𝐸𝑏/𝑁0. In fig.3 𝐸𝑏/𝑁0 

is set to 20db to evaluate system’s performance in moderate 

SNRs, in order to have a better evaluation in low SNRs fig.4 is 

depicted for𝐸𝑏/𝑁0 = 7db. Accordingly, the figures show that 

the estimation error decreases as the burst length increases, this 

can be interpreted as an AWGN noise cancellation effect, which 

is caused by summation. In other words, as the burst length 

grows up, noise summation tends to zero and consequently 

estimation gets better. However, simulations confirm the 

algorithm’s capability of timing recovery with ultimately 

warranting its convergence to the maximum of likelihood 

function, even for burst length as short as 10 symbols.  

In fig.5 the MSE versus the different values of roll-off factor 

is plotted. Burst length and 𝐸𝑏/𝑁0  are set to 100 and 10𝑑𝑏.  



Roll-off factor starts from 0.05 increase 0.1 in each steps and 

ends to 0.95. As predicted. This figure also represents the 

diminishing trend of MSE for increasing 𝛼. 

The produced result in Fig.6 shows the MSE in term of 

𝐸𝑏/𝑁0, for the case of QPSK signal with roll-off factor and burst 

length correspond to 𝛼 = 0.35 and N =100. Simulations have 

been done under the restricted iteration number. Clearly the most 

performance gain can be obtained for values of iteration number 

of 50 or greater than 50. 

IV. CONCLUSION 

In this paper a maximum likelihood based iterative timing 

recovery algorithm is presented that is suitable for burst 

transmission scheme. The algorithm benefits of a NDA TED 

estimator to update the time delay estimation and consequently 

generate the new sequence. Other advantages of the algorithm 

are the insensitive timing recovery of carrier frequency and 

initial phase offset, and lower sample rate needs for timing 

recovery. This algorithm leads to bandwidth efficient timing 

delay estimation which is able to recover all symbols of a burst 

regardless of any preamble. 
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