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Abstract— In this paper, an unconditionally stable vector-based 
meshless method is presented. In the proposed method the 
leapfrog alternating-direction-implicit (ADI) scheme is 
incorporated into a divergence-free vector RBF based meshless 
method. The vector RBF based meshless method has been 
recently proposed for numerical analysis. Unlike the scalar RBF 
meshless methods, this method has been proved to be divergence-
free in the source-free regions. In conventional time-domain 
vector meshless method, the finite-difference scheme is used to 
approximate the time derivatives. Therefore, the CFL stability 
condition on the time-step limits the computational efficiency of 
the method. To overcome this limitation, in this paper, the ADI 
method is directly applied to the differential Maxwell’s curl 
equations. Consequently, unconditional stability of the method is 
obtained by ADI technique and more accurate results are 
achieved by the use of vector basis functions. The effectiveness 
and efficiency of the proposed method are verified by a 
numerical example.  

Keywords- vector meshless method; divergence free; time-
domain; alternating-direction-implicit scheme 

I.  INTRODUCTION 

For a long time, grid- or cell-based techniques, such as the 
finite difference method (FDTD) [1], have been standard tools 
for numerically solving electromagnetic problems. However, 
some limitations of these methods such as difficulties in 
discretization scheme for problems with complex geometries 
still exist. Therefore, the need for the utilization of more 
powerful numerical techniques has laid the foundation for 
developing new numerical methods. Meshless methods, as one 
of these new methods, have attracted a great attention because 
of their capability in representing the problem domain and its 
boundary by using sets of nodes scattered in the problem 
domain and on its boundary [2]. Capability of solving problems 
without using connection information among nodes makes 
these methods suitable for modeling complex problems. 

The radial basis function (RBF) method, is an efficient 
meshless technique to solve partial differential equations. 
Moreover, this method has extended to transient 
electromagnetic field problems [3]. The meshless RBF method, 
despite its strengths, suffers from some limitations. One of 
these limitations is associated with divergence properties of 
electromagnetic fields. According to Maxwell’s equations, in 

charge free regions electric and magnetic fields are always 
divergence-free. However, usually in the process of solving 
electromagnetic problems numerically, the obtained solutions 
are not divergence-free in the absence of source. This 
limitation has roots in the approximate nature of numerical 
techniques. Vector RBF, which is divergence free, was 
developed for non-electromagnetic problems in [4]-[5]. In 
addition, a matrix-valued divergence-free RBF was considered 
in [6], and its divergence-free property was proved 
theoretically. A meshless method incorporated with the vector 
RBF was first proposed for transient electromagnetic analysis 
in [7]. Results of this paper reveal that elimination of the 
artificial charges, which is obtained by the vector RBF, makes 
the numerical results more accurate. Consequently, the vector 
RBF meshless method because of its divergence-free property 
can be an efficient tool for solving time-domain 
electromagnetic problems more accurately.  

In vector meshless method proposed in [7], an explicit 
finite-difference algorithm is used to approximate the time 
derivatives in Maxwell’s equations. Therefore, a maximum 
time-step size is limited by the CFL stability condition. As a 
result, simulation time will be increased by choosing a small 
time-step and conditional stability can be seen. To overcome 
this problem, alternating-direction-implicit (ADI) method can 
be applied for approximating time derivatives. The ADI 
method has previously been applied to several time-domain 
numerical methods. The 3D alternative direction implicit finite 
difference time-domain (ADI-FDTD) method was introduced 
in [8]. ADI formulation of the finite-element time-domain 
method is presented in [9]. Moreover, this method has been 
extended to meshless RPIM method in [10]-[11]. 

In this paper, we introduce an unconditionally stable vector 
meshless method by applying ADI method to divergence-free 
vector RBF method. Formulation of the proposed method is 
presented. In addition, the stability and accuracy of the 
proposed method are investigated by a numerical example. 

 

II. THE MESHLESS SCALAR RBF METHOD 

In this section, we first give a brief description of the scalar 
RBF meshless method. A general function ( )u x  at point x  in 
scalar RBF meshless method can be interpolated by a 



 

combination of the function values at its surrounding nodes in 
computation domain . 
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Where ( - )j x x  is the RBF and ja  are unknown 

coefficients to be computed. Gaussian form of the basis 
function is here [2]: 
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where 2 2( ) ( )
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j j

x y  is the 

location of the jth node surrounding the point of interest x . By 
enforcing the function interpolation to pass through all the N  

nodes, unknown coefficients 
j

a  can be obtained and finally 

field expansion (1) can be found. This method is applied to 
Maxwell’s time-domain equations, and the time derivatives can 
be approximated by an explicit finite difference scheme. 
Consequently, problems can be solved by using the obtained 
formulation for RBF meshless method.  

 

III. VECTOR RBF MESHLESS METHOD 

A. Vector Basis Function and Vector Shape Function 

In this section we briefly refer to vector RBF meshless 
method formulation. The detailed analysis can be found in [7]. 
According to the paper, shape function for the vector RBF 
meshless method, based on the vector RBF proposed in [4]-[6] 
can be found as follows: 
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where N  is the number of scattered nodes in a local support 

domain, vB includes vector RBFs, 

[ ]s jx jy jzu u uu   , [ ]T

j jx jy jzu u uu and 

 

1 1 1 2 1

2 1 2 2 2

1 2 3 3

( ) ( ) ... ( )

( ) ( ) ... ( )

( ) ( ) ... ( )

.

N

N

v

N N N N N N

     

     


     

 
 
 
 
  

R R R R R R

R R R R R R
A

R R R R R R

  

 

B. Meshless  Formulation  

Electric and magnetic fields are expanded by using the 
obtained vector basis function and vector shape function. 
Finally, by considering Maxwell’s equations without sources 
and applying central finite-difference scheme to time 
derivatives, the proposed meshless formulation can be 
obtained: 
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IV. ADI FORMULATION OF THE DIVERGENCE FREE 

MESHLESS METHOD 

We can approximate electric and magnetic fields by using 
vectors shape functions as follows:  
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where NE and NH are the numbers of electric and magnetic 
field nodes respectively. 

Here we consider Maxwell’s time-domain equation as (6), 
and substitute (5) into them. The following equations are 
obtained: 
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Now we present the numerical formulation of the ADI 
vector meshless method. In the conventional ADI scheme, one 
discrete time-step is broken up into two half time steps and, 
there is no time-step difference between electric and magnetic 
field components. S. J. Cooke et al. [12] introduced an 



 

alternative form for the ADI-FDTD scheme. In this algorithm, 
despite conventional ADI-FDTD scheme, the electric and the 
magnetic field terms are computed only at the half and at the 
full time-step, respectively. Therefore, this method reduces 
computational time in comparison to conventional ADI-FDTD 
scheme while they are algebraically equivalent. Finally, 
according to Kronecker’s Delta property of vector shape 
function and ADI scheme adopted from [12], ADI formulation 
of the vector-based method can be obtained as: 
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V. NUMERICAL RESULTS 

Here, to verify the stability and accuracy of the proposed 
ADI vector-based meshless method, a numerical example is 
presented. A 2-D lossless rectangular cavity with dimension 
1.0 mm   1.0 mm and perfectly conducting walls is 
considered. The problem domain is discretized with a set of 
electric field nodes and a set of magnetic field nodes. These 
nodes are arranged in such a way that each electric field node is 
surrounded by magnetic field nodes and vice versa. The 
modulated Gaussian pulse is used as the excitation current of 
the cavity and is specified as: 
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where 10
1 10A   , 11

2.1 10f   , 12

0
16 10t

  and 12
5 10   . 

The time variation of this pulse is shown in Fig. 1. 

A. Verification of  Stability 

First, simulations were run for the problem with 
conventional vector based method and the maximum time-step  
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Figure 1.  Time variation of the modulated Gaussian pulse excitation of the 
2-D rectangular cavity. 

 

which guarantees the stability of this method was determined, 

i.e., in this problem, 13
3.5 10

MAX
t

   . Fig. 2 shows the electric 

field recorded inside the 2-D cavity with the vector based 

meshless method when 1.03
MAX

t t   . As can be observed, this 

method presents unstable solution when the time-step is a little 
larger than the stability limit. However, it is shown in Fig. 3 
that the ADI vector meshless method remains with a stable 
solution even when the time-step is six times as large as the 
stability limit. The solutions were remained stable with even 
larger time-steps. 

B. Numerical Accuracy 

The resonant frequencies were obtained through applying 
the Fourier transform on the time response. Table I lists the 

resonant frequencies in different time-steps for the
10

TE z mode 

as the dominant mode. The results show that, as expected, 
choosing a larger time-step increases the relative errors of the 
proposed ADI method. However, increasing the time-step size 
reduces the number of time-steps and CPU time. 

 

TABLE I.  SIMULATION RESULTS WITH DIFFERENT TIME-STEP 

Analytical 
Result 
(GHz) 

The proposed ADI vector meshless 
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Conventional 
vector meshless 

method 
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Figure 2.  Ex  field recorded at the observation point of the 2D resonator 

solved with the proposed vector based meshless method 1.03 .
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Figure 3.  Ex field recorded at the observation point of the 2D resonator 
solved with the proposed ADI vector based meshless method 
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VI. CONCLUSION 

We introduced ADI formulation of vector meshless method 
in this paper. The proposed method increases the maximum 
time step size of the conventional vector-based meshless 
method. Therefore, this method can be assumed 
unconditionally stable. The number of time-steps and CPU 
time will be reduced by increasing the time-step size. The 
limitation of the maximum time-step size depends on 
numerical errors, and computational cost of the conventional 
method will be reduced with the proposed method at the cost of 
numerical errors.  
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