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Abstract— In this paper, we consider the problem of observer-
based controller design for nonlinear systems which can be 
represented by Takagi-Sugeno (T-S) fuzzy systems. Two practical 
restrictions have been considered to cover a more general 
problem. First, we suppose that the premise variables of the T-S 
model are unmeasurable, which permits one to utilize the 
proposed method in more practical systems. Second, actuator 
saturation is considered as a physical limitation and the controller 
is designed subject to this restriction. Sufficient conditions for the 
existence of such a controller are derived in terms of linear matrix 
inequalities (LMIs). The effectiveness of developed technique is 
shown through a numerical example. 

Keywords-T-S fuzzy system, observer-based controller, input 
saturation, unknown premise variable, PDC controller, linear matrix 
inequality (LMI). 

I. INTRODUCTION 

In the last decades, nonlinear control systems based on T-S 
fuzzy models have attracted lots of attentions [1, 2]. Nowadays, 
T-S fuzzy model has an important role in control engineering, 
neural networks, signal processing, artificial intelligence, 
robotics, data processing. In such models, the nonlinear systems 
are represented by nonlinear weighted summation of number of 
linear time-invariant models, and then this model can be used in 
analysis, stability and the design of controllers. 

Usually, controller design in a T-S fuzzy system is based on 
PDC scheme which is a nonlinear controller constructed by 
nonlinear weighted summation of number of linear gains. 
Moreover, common quadratic Lyapunov function has been used 
to investigate the stability of many T-S fuzzy systems. 

A usual limitation in many practical applications is that only 
the nonlinear T-S fuzzy system outputs are available for 
controller design and directly measuring all the system states is 
difficult or expensive. In these systems, output feedback T-S 
fuzzy controller were considered. Static and dynamic output 
feedback were studied in [3, 4, 5] and the fuzzy observer-based 
control feedback has been investigated in [6]. The fuzzy 
observers are designed to estimate the system states and the 
estimated states are employed for state-feedback or output  

 

 

feedback control of nonlinear systems.  

The premise variables of the fuzzy observer may be 
considered to depend on the observer state variables (it is 
denoted as case B in [7]). Although, the designed controller in 
this case is more applicable practically, its design procedure is 
much more complex than the one in the case that premise 
variables are measurable (case A), since the separation principle 
is not applicable in case B.  

In [8] and [9], the design of observer-based controller for a 
class of continuous-time nonlinear systems presented by T-S 
model with unmeasurable premise variable were considered. In 
[10], to overcome the hardness of measuring premise variable of 
a T-S fuzzy system, a fault detection and prediction scheme were 
designed for a class of fuzzy systems with unmeasurable premise 
variables and external disturbances. 

Another limitation in the practical applications is the 
existence of saturation. Saturation is a nonlinear term in many 
dynamical systems which can exist in different parts of control 
system such as actuators, sensors and controllers. Because of 
physical limitation of the devices, actuators saturation is very 
destructive in practical control systems. Ignoring saturation can 
lead to performance degradation and even instability of closed-
loop systems. Considering the actuator saturation in the 
controller design for a nonlinear T-S fuzzy system has been 
investigated in the literature [11, 12, 13]. For instance; in [13], 
the problem of the fuzzy model-based control of an overhead 
crane with the input delay and actuator saturation has been 
investigated. In [14], a method for T–S fuzzy model with input 
saturation for state feedback controller design and optimizing H∞ 
performance bound has been proposed. 

In some approaches, observer-based T-S fuzzy design with 
actuator saturation have been investigated. In [15], fault tolerant 
saturated control problem for discrete-time T-S fuzzy systems 
with delay is studied. Sufficient conditions of stabilization based 
on a fuzzy observer are presented. The observer is then used in 
fault detection, fault localization and controller reconfiguration 
to maintain asymptotic stability of the system. In [16], the fault 
tolerant control scheme was proposed for near space vehicles 



 

(NSVs) with system uncertainty, unknown external disturbance, 
actuator faults and input saturation based on the sliding mode 
control. Considering input saturation, a compensated term was 
constructed in the control law. The stability of the closed-loop 
system was proved and all closed-loop signals were uniformly 
ultimately bounded via Lyapunov analysis. To the best of our 
knowledge, observer-based controller design for unknown 
premise variables T-S fuzzy systems with input saturation has 
not been considered yet in the literature. 

 In this paper, we propose a new method for observer-based 
controller design for T-S fuzzy system with input saturation and 
unknown premise variables. To consider the input saturation 
constraint, we extend the proposed method in [14] to the 
observer-based control of unknown premise variables T-S fuzzy 
systems which was given in [17]. The design conditions will be 
converted to LMIs using Finsler’s lemma. It will be shown that 
the proposed observer-based controller stabilizes the saturated 
T-S fuzzy system in a pre-defined region of the system states. A 
simulation example will be given to verify the effectiveness of 
the proposed method. 

The paper is organized as follows: In Section II, T-S fuzzy 
model and observer-based fuzzy controller are defined, and 
some preliminaries are presented. In Section III, an observer-
based controller is designed for a T-S fuzzy system with input 
saturation and the stability of the closed loop system is proven. 
Simulation results are presented in Section IV. Finally, in section 
V some concluding remarks are given. 

Notation: In this paper, ɶ
ij
A  equals to −A A

i j
 , ( )H A  stands 

for ( TA A+ ) and the following notations will be used: 

                          
1

( )
r

i i
i

A h Aµ µ
=

=∑ ,                                   (1) 

                         ˆ
1 1

ˆ( ) ( )
r r

i j ij
i j

A h h Aµµ µ µ
= =

=∑∑ ,                    (2)  

                           
ˆ ˆ

.A A Aµµ µ µ= −                                      (3) 

II. PRELIMINARIES 

A. T-S Fuzzy model 

The T-S fuzzy model that was suggested by Takagi-Sugeno, 
represented by if-then rules that describe the input-output 
relation of system. In general, the T-S fuzzy system is described 
as follow: 

2

2

( ) ( ) ( )

( ) ( )

x t A x t B u t

y t C x t

µ µ

µ

= +

=

ɺ

                               (4)
         

               

 where x( )  Rnt ∈ , ( )  mu t R∈  , and ( )  py t R∈ is the state 

vector, control input, and output vector, respectively. Aij  is the 

fuzzy set, r is the number of model rules and 
1 p

µ µ∼  are known 

premise variables that can be functions of state variables 

1 2[    ]pµ µ µ µ= …  and: 

1
( ) ( ) ( ) ,

r

i ii
i

h w wµ µ µ
=

= ∑  (5) 

with: 

1
( ) ( )

p

i ij j
j

w Mµ µ
=

=∏                                (6)  

B. Observer model with saturated input 

The observer design is a very important problem in control 
systems. Since in many practical nonlinear control systems, state 
variables are often unavailable, output feedback or observer-
based control is necessary and has absorbed and attracted 
researchers, [18, 19]. 

In this paper the fuzzy state observer for T-S fuzzy model 
with saturated input is formulated as follows: 

 

ˆ ˆ ˆ2
ˆ ˆ ˆ( ) ( ) ( ) ( ( )- ( ))x t A x t B u t L y t y tµ µ µ= + +ɺ                         (7) 

ˆ2
ˆ ˆ( ) ( )µ=y t C x t                                                                      (8) 

where µ̂  is the estimate value of premise variable µ and iL 's 
are the observer gains. Using the state estimates, the following 
control law is used: 

 ( )u sat u=                                          (9) 

where: 

1 1
2 2

u u u u
ε ε+ += − +                                (10) 

Define the new auxiliary signal ( )v t as follows: 

1
( ) ( ) ( )

2
v t u t u t

ε+=− +                               (11) 

Thus: 

1
( )

2
u u v t

ε+
= +                              (12)  

In this paper, we use the following structure to construct the 
control signal: 

ˆ
ˆ( ) ( )µ= −u t Z x t                                (13)  

where iZ ’s are the controller gains to be designed. Notice that 
the saturation condition is defined by: 

min min
( ) min max

max max

u if u u

sat u u if u u u

u if u u

<
= < <
 >

               (14) 

where limu  is the control input limit.  



 

C. Closed loop system 

The estimation error can be defined as ˆ( ) ( ).e x t x t= −
Then, the error dynamics of observer is obtained as: 

   ˆ( ) ( ) ( )e t x t x t= − ɺɺ ɺ                               (15) 
Or equivalently: 

2 ˆ( ) ( )e A x t B u x tµ µ= + − ɺɺ                          (16) 

By using (9) and substituting (7) in (16), we have: 

ˆ ˆ ˆ ˆ ˆ2 2

ˆ 2 2

1
ˆ( )

2

( )

e A B Z L c x

A L c e B v

µµ µµ µ µ µµ

µ µ µ µ

ε+
= − −

+ − +

ɺ

                    (17) 

Thus, the closed-loop system becomes: 

 
ˆ2

2
( ) ( ) ( )cl

B
t A t v t

B
µ

µ
θ θ

 
= + 

 

ɺ                           (18) 

where: 
ˆ ( )

( )
( )

x t
t

e t
θ  

=  
 

                                (19)                                                                        

and: 
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A B Z L C L C
A

A B Z L C A L C
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ε

ε

 +− + 
 =
 +− − − 
 
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D. Useful lemmas 

The following lemmas have been used in the proof of the 
main result of this paper: 

Lemma 1 [14]: For saturation constraint defined by (14), as long 

as lim( )
2

u
u t ≤ , we have: 

11
( ) ( ) ( )

22
u t u t u t

εε −+− ≤                                 (21) 

and hence: 

211 1
( ) ( ) ( ) ( ) ( ) ( ) ( )

22 2

T
T

u t u t u t u t u t u t
εε ε −   + +− − ≤   

   
          (22)  

where0 1ε< < . 
Lemma 2 [7]: For any matrices or vector X and Y with 
appropriate dimensions, we have: 

1
ζ ζ

−
+ ≤ +

T T T T
X Y Y X X X Y Y                 (23) 

where 0ζ >  is any scalar. 

III.  MAIN RESULTS 

In this section, we offer a novel method for observer-based 
controller design of T-S fuzzy system with input saturation 
based on a common quadratic Lyapunov function. The design 
conditions will be formulated as LMIs. Moreover, we will 
compute an approximation of the region of attraction based on 
the proposed approach.  

Theorem 1. Given positive scalar design parameters 1δ

and 2
,δ the observer-based closed-loop system (18) is 

asymptotically stable if there exist symmetric positive-definite 

matrices 
1

Q , 
2

Q  and matrices
1S ,

2
ijkS ,

3
ijkS ,

6
jS , M k ,

4
ijkS and 

5
ijkS

( , , 1,...,i j k r= ) such that following LMI condition holds:  

0
i
jkΠ <                                                                (24) 

1

2 1
0, 1, ...,lim( )

T

k

k

Q M
k ru

M Iρ
ε

−

 
  ≥ =
 
  

                              (25) 

where for 2 2=C Ci k : 
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δ

ζ
ε
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−

Π =

 +  − + +    + − + − + −   
  − −  
  
 − 
 −  

ɶ ɶ
(26) 

and for 
2 2

≠
i k

C C : 

1 1 1
1 2 2 2 1 23 3 32 22
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1

i

jk
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ijk ijkH Q Q T D T Di i
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δ

δ

ζ
ε
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+ − −− + +

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
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
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− + −

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ɶ ɶ
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 
 
 
 
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 
 
 
 
 
 
  

   (27)        

with: 

1

1
2 3

0ijk

ijk ijk

S
D

S S

 
 =
  

,                                       (28) 

1

2
54

0ijk

ijk ijk

S
D

S S

 
 =
  

,                                       (29) 

63
0

j jD S =                                             (30) 

The stabilizing control feedback and the observer gains in (7) 
and (13) are given by: 

1

k k
Z M Q

−
=ɶ                                          (31)                                                      

where: 

0 − 
ɶ ≜ kk

Z Z                                          (32)                                                   

and: 

   
1

6 1

j

j
L S S

−
= .                                         (33) 

On the other handiT ’s ( 1,..., )i r=  satisfying 

[ ]2 0i iC T I=                                      (34) 
Proof: Consider the common Lyapunov function candidate as 
follows: 

( ( )) ( ) ( )TV t t P tθ θ θ=                                    (35) 



 

where 1

2

0

0

P
P

P

 
 =
  

with 1 0P > and 2 0P > . 

The derivative of the Lyapunov function is as follow: 

( ( )) ( ) ( ) ( ) ( )T TV t t P t t P tθ θ θ θ θ= +ɺ ɺɺ                    (36)            

According to (18) we have : 
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µ

θ
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B
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Now by using lemmas 1 and 2, it results as: 
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ˆ ˆ
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+

ɺ

        (38) 

By the way, according to (32) and Pre- and post-multiplying 

(38) by 
1

Q P
−

≜ gives: 

ˆ ˆ2 2

2 2

ˆ ˆ

1
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1 2
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2

T
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T
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+

ɺ
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             (39)  

So for Lyapunov stability the following inequality must be 

hold: 

1 ˆ ˆ2 2
ˆ ˆ

2 2

1 2
( ( ) ) 0

2

T
T T

cl cl

B B
QA A Q QZ Z Q

B B
µ µ

µ µ
µ µ

ε
ζ ζ

−     −
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      

ɶ ɶ           (40)  

To drive LMI conditions, (40) holds if: 

1 1

1
02 2( )

1

T
cl cl k

k

A Q QA BB QZ

Z Q I

ζ

ζ
ε

− −

−

 + + 
< 

− − 

ɶ

ɶ
            (41)  

To do that, let matrix Q be partitioned as ( )1 2,Q diag Q Q= , then 

1 0,Q > 2 0Q > therefor the inequality (41) can be rewritten as: 

1 1
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  
  
  
   
  
  
  
   

ɶ

ɶ

   (42) 

For the sake of brevity, using the same procedure given in 
[17], it is not hard to show that (24) holds if (42) is satisfied. 

On the other hand, the constraint lim( )
2

u
u t ≤ can be written as: 

lim

1
ˆ ˆ( )Z ( )

2

r

k k
k

u
h x tµ

=
∑ ≤                                    (43) 

                     

We know that if  ˆ
limˆ ( )
2µ ≤

u
Z x t , then (43) holds. 

Let � �
2limˆ ˆ ˆ( ) ( )| ( ) ( ) ( )

2
T T

u
k x t x t Z Z x tµ µ

 
 Ω = ≤
 

then the equivalent 

condition for an ellipsoid { }( , ) ( ) ( )TP t P tρ θ θ ρΩ = ≤ being a 

subset of ( ),kΩ  i.e. ( , ) ( )P kρΩ ⊂ Ω is: 

1 2lim
( ) ( )

T

k k

uP
Z Zρ ε

−
≤ɶ ɶ                                     (44)                                    

Now by using the Schur complement, LMI condition for (44) 
results in: 
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u
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ɶ
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Pre-and post-multiplying (45) by 
1 0

0

P

I

− 
 
  

gives:   
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1 2 1
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T
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u
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By 
1

Q P
−

= , (46) is equivalent to:  

2 1
0

lim( )

T
k

k

Q QZ

u
Z Q Iρ

ε
−

 
 
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ɶ

ɶ
                                      (47) 

It is easy to show that if (25) holds then (47) holds too. This 
completes the proof.□ 

Remark 1. It should be noted that an estimate of the region 
of attraction of the closed-loop system in which the observer-
based controller proposed in Theorem 1 is utilized, can be 

calculated by { }( , ) ( ) ( )TP t P tρ θ θ ρΩ = ≤ where 
1

P Q
−

= is derived 
by solving the LMIs. 

Remark 2. A possible solution iT associated with the output 

matrix 2iC  in (36) can be given by: 

1
2 2 2 2( )T T

i i i ii
T C C C C− ⊥ =                                          (48) 

where 2iC ⊥

 
is the orthogonal basis for the null space of C2i  

with 2 2 0i iC C ⊥ = . 



 

Remark 3. For the case that output matrices in (4) satisfy
2 2 , ( 1,..., )iC C i r= = , in order to relax the proposed LMIs given 

in Theorem 1, one can solve the following alternative LMIs: 

0,i
jjΠ < ,,...,1 rj =                            (49) 

2
0,

1
i i i
jj jk kjr

Π +Π +Π <
−

,,,...,1, kjrkj ≠=        (50) 

where Πi
jk  is defined in (27) and 1D  is defined as:  

1
1

2 3

0
.

S
D

S S

 
 =
  

 

IV.  SIMULATION EXAMPLE  

Consider a 2-rule T-S fuzzy model with the following 
matrices [20]: 

1 0 2.5 0 1
, , ,1 2 21 221 1 2.3 1 0

A A B B
     
     = = = =
− − − −          

 

[ ]21 22 10 2C C= =  

In order to design observer-based controller for this T-S fuzzy 
system, we solve the LMIs of Theorem 1 by setting the design 

parameters 7
1 10δ −= , 0.99ε = , ρ=0.9,

 
=lim 11.9u , initial 

conditions 0
1 2 1 0x  = −  ,and according to (34) we have: 

1 2
.

4.5 10

 
 =
− −  

T  

The grades of membership functions are defined as: 

21
( ( )) 0.5 arctan( ( )) ,h x t x t π= +         

                        2 1
( ( )) 1 ( ( ))h x t h x t= −  

where [ ]1 2( ) ( ) ( ) T
x t x t x t= . Then, the feasible solutions using 

SeDuMi [21] are given by: 

1
13.761 -8.711e-07Z  =   ,

2
13.108 2.334e-06Z  =    

11.483
1 -6.772

L
 
 =
  

,
2

13.940

-0.908
L

 
 =
  

 

The close-loop system states of the system and their 
observed values using an observer-based controller with the 
abovementioned matrices are given in Fig. 1 and the errors 
between states and their obtained observer values are shown in 
Fig. 2. Moreover, in Fig. 3, the control signal with saturation and 
without this constraint are shown. u (dash lined) and u  (solid 
lined) are represented for control signal without constraint and 
saturated control signal, respectively. 

 

 
Figure 1. Closed-loop system states and their observed 

values 
  

Figure 2. Error between states and their observed values 

  

Figure 3.  Control signal with saturation and control signal 

without saturation constraint 

 
According to Figs. 1-3, it is clear that the proposed controller 

obtained from solving the LMIs of Theorem 1 successfully 
stabilizes the closed-loop system with the saturation constraint 
on the control signal. In fact, although the control signal cannot 
exceed the maximum value 11.9, the controller stabilizes the 
closed-loop system. It should be noted that if we did not consider 
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the saturation constraint, the control signal a maximum value 
30.231 would be obtained which is approximately two times 
more than the maximum permissible value for the actuator 
output. 

V. CONCLUSIONS 

In this paper, we proposed an observer based controller 
design for a class of nonlinear systems with input saturation. The 
nonlinear system was represented by a T-S fuzzy model in a pre-
defined region. Moreover, it was supposed that premise 
variables were not measurable to be used in the structure of the 
observer-based controller. Then, by using the PDC scheme, an 
observer-based controller with merging input saturation 
constraint into the design process was proposed for this T-S 
fuzzy system.  It was shown that the proposed observer-based 
controller stabilizes the saturated T-S fuzzy system in a pre-
defined region of the system states. The conditions for the 
existence of such a controller were converted into some LMIs. 
Simulation results verified the efficiency of the proposed 
controller. 
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