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Abstract— In this paper a low complexity hardware is designed to 

generate a deterministic matrix for compressive sensing systems. 

The construction of the matrix is based on the connection 

between the parity check matrix of LDPC codes and the 

measurement matrix of compressive sensing. For efficient 

hardware realization, a geometric approach to the construction 

of LDPC codes is used for matrix generation on the fly without 

requiring a lot of storage. The performance of generated matrix 

is approved under ℓ1-minimization and OMP recovery 

algorithms, and it performs comparably to the corresponding 

random matrix. The described hardware has been implemented 

on a Xilinx Spartan 6 FPGA. 

Keywords- Hardware Design, Compressive Sensing, Finite 

Geometry, Sparse Approximation 

I.  INTRODUCTION  

Many natural and man-made signals have a sparse 
representation on an appropriate basis [1]. Sampling these 
signals at nyquist rate produces a large redundancy in sampled 
data. Thus it is necessary to compress data before its storage or 
transmission. In compressive sensing framework, signals are 
sampled in the compression form [2]–[5]. This approach is 
widely used in the practical applications such as magnetic 
resonance imaging (MRI) [6], radar [7], wireless 
communication [8], [9], and monitoring the electrical activities 
of the human body [10]–[12]. The important part of this 
method  of data acquisition is the measurement matrix that 
exhibits a dimensional reduction [2]. An appropriate  
measurement matrix should satisfy some criteria to guaranty 
that the original signal can be recovered accurately[13]. In 
most hardware implementation frameworks, especially for high 
speed signal reconstruction, a random measurement matrix is 
employed [9], [11], [14]–[18], but using these matrices have 
some limitations including their storage requirements and 
computational cost [13]. These drawbacks make random 
matrices inefficient for hardware implementation. 
Deterministic construction of measurement matrix is another 
approach that alleviates the mentioned problems [13], [19]–
[24]. Since the entries of deterministic matrices can be 
computed on the fly, these matrices provide storage efficiency 
[19]. Also, by using  the structure of deterministic matrices, the 
recovery algorithms can be accomplished with lower 
complexities and lower memory access. 

In recent years, various deterministic measurement matrices 
are presented in the literatures, e.g., Toeplitz and circulant 
matrices [25], sparse binary matrices [10], [13], Chirp sensing 
codes [22], finite fields [21] and second order Reed-Muller 
codes [20]. On the other hand, hardware implementations of 
several recovery algorithms are presented in the literatures 
[11], [14]–[18]. However, most of these works use random 
measurement matrices that are hard to be implemented in 
hardware. This limits the practical usage of reconstruction 
algorithms especially when the size of signal is large. 

In this paper a novel hardware architecture for realizing 
low-complexity deterministic construction of measurement 
matrix is designed and implemented on a FPGA platform. The 
proposed method is based on the constructing codes via finite 
geometry [26], [27]. An important property of the finite 
geometry codes is that they are either cyclic or quasi cyclic 
[26]. This feature leads to a rotational shift architecture that can 
be implemented in linear time. The structure of proposed 
deterministic construction helps to have fast recovery in real 
time applications.  

 This paper organized as follows. The preliminaries of 
compressive sensing are introduced in section II. Section III 
describes the matrix construction details. Hardware 
Implementation and Simulation results are presented in 
sections IV and V respectively. And finally, the conclusions 
are provided in section VI. 

II. PRELIMINARIES 

From mathematical point of view, sampling in compressive 
sensing can be represented by multiplying the k-sparse signal 
x∈ℝn with a measurement matrix A∈ℝm×n [2]. Signal x is 
called k-sparse if it has only k nonzero entries with k≪n. 
Matrix A maps an input signal with large number of samples 
into a typically much smaller signal denoted by y, i.e., the 
measured vector y ∈ ℝm  is obtained as below:  

y=Ax (1) 

An under-determined set of linear equations should be 
solved for reconstructing x from the above measurement. This 
problem seems to be ill-posed. But, by selecting a suitable 
measurement matrix under certain conditions and If the signal 
x is known to be sparse, then a unique solution exists. It is 
proven that a sparse signal can be exactly recovered by solving 



a sparse approximation problem. The problem can be 
expressed as follows [2], [28]: 

min ||x||0     subject to Ax=y, (2) 

where ||x||0≜|{i: xi≠0}| denotes the ℓ0-quasi norm of x. Solving 
this problem requires an exhaustive enumeration of all possible 
sparse patterns and hence it is NP-hard. There are two 
conventional methods in compressive sensing for relaxing this 
problem that greatly reduce the required computational effort. 
One pursues a convex optimization or the ℓ1-minimzation 
problem that can be stated in a relaxed form as a basis pursuit 
as follows [4]: 

min ||x||1     subject to Ax=y, (3) 

where ||x||1≜Σ |xi| (i=1...n) denotes the ℓ1-norm of x. The other 
approach considers greedy algorithms that typically produce 
sub-optimal solutions. The required computation in the greedy 
algorithms is smaller than that of convex relaxations. These 
algorithms, such as the matching pursuit (MP) and its 
modifications, operate in an iterative search manner and the 
optimal solution is approximated well. 

To solve the sparse problem in above mentioned methods, 

the measurement matrix should satisfy some criteria. The first 

criterion is the Null Space Property (NSP). Null space of a 

matrix A is defined as [2]: 

𝒩(A)={z : Az = 0} (4) 

Matrix A uniquely represents all k-sparse x if and only if 
𝒩(A) contains no vectors in the 2k-sparse space. One of the 
most common methods for characterizing this property is based 
on a parameter known as the spark. Spark (A) is the minimal 
number of linearly dependent columns of A  defined as [29]: 

spark (A)=min {||z||0 : z ∈ 𝒩(A))} (5) 

It has been shown that if and only if spark (A) >2k, for any 
vector y there exists at most one k-sparse signal such that y=Ax 
[2]. 

The other important property in matrix construction is 
known as Restricted Isometry Property (RIP). For any k-sparse 
signal x, a matrix AMN fulfills the RIP of order k with 
restricted isometry constant δk if [13]: 

2 2 2

k k2 2 2
(1 ) x Ax (1 ) x     (6) 

By satisfying this condition, any k columns vectors from A 
behave like an almost orthogonal system. While the RIP 
guarantees exact and robust recovery of sparse signals, there is 
not  any efficient way to verify that a general matrix A satisfies 
this property [23]. In many cases it is preferable to use instead 
a property of A that is easily computable [2]. The coherence of 
a matrix is one such property, that its small value implies RIP. 
The coherence of a matrix A is defined as [13]: 

i j

i, j [1,n],i j i 2 j 2

| a ,a |
(A) max

|| a || || a || 

 
   (7) 

where ,     is the inner product of any two columns of A, and 

||a||2 ≜ (Σ (xi)2)1/2 (i=1..n)  denotes the ℓ2-norm of an n-
dimensional vector.  The coherence parameter measures the 
smallest angle between each pair of matrix columns and plays 
an important role in the deterministic matrix construction. It is 
shown that the coherence of a matrix is always in the range of 
[2]:  

 
n m

(A) 1
m n 1


  


 (8) 

 The lower bound is known as the Welch bound, and when 

n≫m, it approximately equals1 / m . There are some relations 

between the introduced properties, that permits to easily 
compute or at least estimate them by using the parameter used 
to design the measurement matrix. For example, the coherence 
and spark properties of a matrix is related by [29]:  

1
spark(A) 1

(A)
 


 (9) 

III. MATRIX CONSTRUCTION 

In [27], a mathematical connection between LDPC codes 
and compressive sensing is illustrated, and linear programming 
decoding in channel coding and compressive sensing are linked 
together. The linear programming is extensively used for the 
problem of finding the sparsest solution of an underdetermined 
system of linear equations. An LDPC code is defined as the 
null space of a parity check matrix denoted by H [19], [26], 
[27], [29]. In the following, an algebraic method is presented 
for constructing a modified parity check matrix based on 
hyperplanes of two different dimensions in finite geometries. 

For a prime number p and two integers m and s ( m≥2 and 
s≥1), the m-dimensional Euclidean geometry over finite field 
GF(ps) is represented by EG(m,ps), and m-tuples over GF(ps) 
are the points of this geometry [26]. If α is a primitive element 
of a finite field GF(pms), then the elements in GF(pms)  can be 
represented as powers of α as follows: α-∞ =0, α0=1, α1, α2,…  , 
αp^ms-2, where 0 represents the origin of the geometry. Every 
element αi in GF(pms) can be expressed as [30]: 

αi=ai0+ai1α+ai2α2+ ··· +ai,m-1αm-1 (10) 

where aij∈GF(ps) for 0≤j<m. It follows from (10) that there is 
a one-to-one correspondence between the element αi and the m-
tuple (ai0, ai1, … , ai,m-1 ) over GF(pms). Thus the elements of 
GF(pms) forms an m-dimensional Euclidean geometry 
EG(m,ps). A μ-dimensional subspace of the vector space of all 
the m-tuples over GF(pms) is called a μ-flat. A μ-flat can be 
represented as [30]: 

a0+ β1a1+ β2a2+ ··· + βμaμ (11) 



where βi is an element in the finite field GF(ps). By beta 
variations, the points belong to a certain μ-flat are obtained and 
each set of point form a μ-flat that pass through the α0 point. 
By selection of different points in (11), all the μ-flats are 
determined over GF(pms). A set of μ-flats which are disjoint 
and contain all the points of EG(m,ps), are parallel to each 
other and form a parallel μ-flat bundle. A parallel bundle 
contains all the points of EG(m,ps) where each point appearing 
once and only once [29].  

For 0≤μ1<μ2≤m the parity check or incidence matrix of μ2-
flat over μ1-flat is a binary matrix that it’s rows corresponds to 
all the μ2-flats and it’s columns corresponds to all the μ1-flats in 
EG(m,ps). The entry hij of this matrix is ‘1’ if and only if the ith 
μ2-flat contains the jth μ1-flat. Every row of this matrix is an 
incidence vector of μ2-flats over μ1-flats [26], [29]. Assume 
EG*(m,ps) denotes the EG(m,ps) without origin and all the flats 
passing through the origin. It has been shown that all the μ-flats 
in EG*(m,ps) can be partitioned into disjoint cyclic classes [26]. 
The μ-flats of each  class can be arranged in such a way that 
each incidence vector corresponding to a certain μ-flat is a 
cyclic shift of the incidence vector above it. This grouping of 
incidence vectors in the rows and columns of the constructed 
matrix leads to the square submatrices that each of which is a 
circulant matrix. This structure is shown in Fig. 1. 

To obtain a circulant matrix in which each row vector is 
rotated one element to the right relative to the preceding row 
vector, a parity check matrix is constructed based on the lines 
and points of EG*(m,ps). By arranging the columns of this 
matrix in order of α0=1 α1, α2,…  , αp^ms-2 where α is a primitive 

element of GF(pms) and also arranging the rows of this matrix 
in term of the cyclic classes a circulant matrix is generated as 
shown in Fig. 2. By selecting a suitable number of the parallel 
bundles, the circulant matrix is appropriated for dimensionality 
reduction in compressive sensing systems [29]. After arranging 
the matrix, parallel bundles appear at equal intervals and can be 
removed systematically. Fig. 3 shows the parallel bundles in 
the circulant incidence matrix structure.  

according to (7) and (8), the coherence and the Welch 
bound of the proposed matrix is 0.125 and 0.055, respectively. 
In [29] an improved lower bound of spark is obtained for 
binary matrix from finite geometry that shows their relatively 
large  spark. the large value of spark gives an intuitively 
description on the good empirical performance of the 
constructed matrix by this method. 

IV. HARDWARE IMPLEMENTATION 

The proposed architecture for the hardware implementation 
of the deterministic matrix generation is shown in Fig. 4.  First 
a 1023×1023 parity check matrix is constructed based on the 
not passing through the origin lines and non-origin points of 

R
e

g
is

te
r 

w
it

h
 l

e
n

g
th

 N

R
e

g
is

te
r 

w
it

h
 

le
n

g
th

 M

Equal 
intervals

N×N

M×N

R
o

ta
ti

o
n

a
l 

S
h

if
t

 
Figure 3.  Deterministic matrix generation hardware 
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Figure 2.  Partioning incidence matrix into disjiont cyclic classes  
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Figure 4.  Circulant incidence matrix 
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Figure 1.  Parallel bundles in the circulant incidence matrix structure 

 



EG(2,25). Then by selection of 8 parallel bundles, the matrix is 
made appropriate for dimensionality reduction in compressive 
sensing systems.  

As shown in Fig. 4, one column of square matrix is put in a 
register, and in every clock, the data is shifted rotationally to 
the down. Through a proper selection of the elements, the 
matrix is generated. The element selection is based on the 
parallel structure concept of Euclidian geometry. As mentioned 
before, after reordering the points in EG based on the primitive 
elements of the finite field, some arrangement appears in 
parallel bundles at equal intervals. In other words, μ-flats that 
belong to a specific parallel bundle, repeat at a certain 
intervals. By selection of the corresponding entry from shifted 
row, the columns of matrix are constructed in each clock. The 
proposed design is implemented on a Spartan6 FPGA. The 
device utilization summary and the timing obtained from the 
place and route are presented in Table I.  

V. SIMULATION RESULTS 

For performance evaluation, a simulation is carried out 
under the following conditions. A 248×1023 measurement 
matrix is constructed based on the finite geometry, and to 
compare with random measurement matrices, a same size 
Gaussian matrix is also used. The entries of the random matrix 
are chosen independent and identically distributed (i.i.d.) from 
pseudorandom numbers. A k-sparse signal is obtained by first 
selecting the places of the nonzero elements by using random 
permutation of the integers, and then generating the elements 
values from normally distributed pseudorandom numbers. The 
size of  the signal is 1023 which is  sampled by the constructed 
matrix to a 248 measured signal. Fig. 5 shows the sparsity 
effect on the recovery algorithm for both Gaussian random 
matrix and the proposed deterministic matrix. The average 
percentage of perfect OMP and ℓ1 minimization recovery over 
1000 trials is shown in this diagram. The relative recovery error 
is calculated as e=||x*-x||2/||x||2, where x* represents the 
recovered signal. If e<0.001, the recovery is considered to be 
perfect. As depicted in  Fig. 5, the performance of the recovery 
algorithm using deterministic matrix is comparable to the 
random matrix.  

VI. CONCLUSION 

In this paper a low complexity hardware for deterministic 
generation of compressive sensing measurement matrix is 
proposed. The matrix construction is based on the line-point 
incidence matrix of the Euclidian Geometry. This matrix has a 
sparse, binary, and cyclic structure that provides an efficient 
hardware realization without requiring a considerable storage 

space. The designed hardware can generate every column of 
the matrix on the fly within a period of about 1ns.  The binary 
and sparse properties of the presented matrix can help to speed 
up the recovery algorithms in real time applications. The 
simulation results show that the accuracy of the recovered 
signal by using the proposed measurement matrix is 
comparable to the random matrix.   
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