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Abstract— In this paper, a state-feedback controller is proposed 

for stabilization of a class of nonlinear systems in the presence of 

matched and unmatched uncertainties. By combination of 

backstepping and time scale separation, first, to deal with the 

existence of uncertainties, high-gain filters are designed, which 

estimate the uncertainties and then, a fast dynamical equation is 

derived where the solution is sought to approximate the 

corresponding ideal virtual/actual control inputs. In this approach 

the problem of "explosion of complexity” caused by the traditional 

backstepping technique is eliminated. Finally, the simulation 

results are provided to demonstrate the effectiveness of the 

proposed approach. 
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I.  INTRODUCTION 

The control of dynamical systems, whose mathematical 
models contain uncertainties, has occupied the attention of 
researchers in recent times and has been extensively studied [1-
12]. Chakrabortty and Arcak [1] proposed time-scale separation 
based robust redesign technique for stabilization of uncertain 
nonlinear systems. In [1], a high gain filter is designed to 
estimate the uncertainty. Control design is based on time-scale 
separation using tools of the theory of singular perturbations [5, 
9-10]. The fast variable arising from this filter is used in the 
nominal feedback control law to cancel the effect of the 
uncertainy. So, after a fast transient the closed loop trajectories 
converge to the nominal trajectories.  

In [1], the control approach and Lyapunov redesign 
discussed for nonlinear systems with uncertainty satisfying the 
matching condition, that is, when it appears in the same equation 
as the control. The matching condition assumption is 
unfortunately fairly restrictive and not satisfied by the majority 
of real world systems. Hence, the non-matching disturbances or 
uncertainty, that is, when it appears before the control input may 
cause unacceptable deterioration in the performance of the 
regulated output. In [13], the work of Chakrabortty and Arcak 
[1] is extended to system with unmatched uncertainty by 
employing time scale separation in backstepping procedure. 
Backstepping method is one of the most popular techniques of 
nonlinear control design [5, 7-8,11] which provides a systematic 
framework. However, because of the repeated differentiations 

of the virtual control inputs in the backstepping procedure, the 
problem of "explosion of complexity” has been occurred. In 
[14, 15], this problem is solved by time scale separation. 

In this paper, by employing the time scale separation 
method in the backstepping procedure first, high gain filters are 
designed to estimate the uncertainties. Then, the time 
derivatives of the virtual/actual control inputs are defined as 
solutions of fast dynamic equations and their integrals are used 
as the virtual/actual control inputs. This approach can overcome 
the uncertainties and also the problem of "explosion of 
complexity” caused by the traditional backstepping technique 
is eliminated 

 This paper is organized as follows. Preliminary results as 
well as problem formulation are presented in section 2. In 
section 3, we develop the controller structure. Finally the 
simulation results and some conclusion remarks are given in 
sections 4 and 5. 

II. PRELIMINARIES AND PROBLEM 

FORMULATION 

A.   Preliminiries on singular perturbation theory [5]  

Consider the problem of solving the state equation  

𝑥̇(𝑡) = 𝑓(𝑡, 𝑥(𝑡), 𝑧(𝑡), 𝜀)            𝑥(0) = 𝜉(𝜀)  

𝜀𝑧̇(𝑡) = 𝑔(𝑡, 𝑥(𝑡), 𝑧(𝑡), 𝜀)         𝑧(0) = 𝜂(𝜀)                   (1)  

where 𝜉(𝜀)  and 𝜂(𝜀)  are smooth. It is assumed that the 

functions 𝑓 and 𝑔  are continuously differentiable in their 

arguments for (𝑡, 𝑥, 𝑧, 𝜀) ∈ [0, ∞) × 𝐷𝑥 × 𝐷𝑧 × [0, 𝜀0]  where 

𝐷𝑥 ⊂ 𝑅𝑛  and 𝐷𝑧 ⊂ 𝑅𝑚 are open connected sets, 𝜀0˃ ≫ 0 . If 

𝑔(𝑡, 𝑥, 𝑧, 0) = 0  has 𝑙 ≥  1  isolated real roots 𝑧 =
ℎ𝑎(𝑡, 𝑥),   𝑎 = 1, 2, … , 𝑙 , for each (𝑡, 𝑥) ∈ [0, ∞) × 𝐷𝑥  when 

𝜀 = 0 , we say that the model (1) is in ‘standard form’. Let us 

choose one fixed parameter 𝑎 ∈ {1, 2, … , 𝑙 }, and drop the 

subscript a from h from now on. Let 𝑣 = 𝑧 − ℎ(𝑡, 𝑥) where 

ℎ(𝑡, 𝑥) denotes a chosen root of l roots satisfying 𝑔(𝑡, 𝑥, 𝑧, 0) =
0. From singular perturbation theory, the ‘reduced system’ is 

represented by 



𝑥̇(𝑡) = 𝑓(𝑡, 𝑥(𝑡), ℎ(𝑡, 𝑥(𝑡)),0),        𝑥(0) = 𝜉(0)                       (2) 

and the ‘boundary layer system’ with the new time scale 𝜏 =

𝑡/𝜀 is defined as 

𝑑𝑣

𝑑𝜏
= 𝑔(𝑡, 𝑥, 𝑣 + ℎ(𝑡, 𝑥(𝑡)), 0) ,         𝑣(0) = 𝜂0 − ℎ(0, 𝜉0)   (3) 

where 𝜂0 = 𝜂(0)  and 𝜉0 = 𝜉(0)  are treated as fixed 

parameters. The following Tikhonov ̉s theorem is introduced 

[5] 

 

Theorem 1: Consider the singular perturbation system (1), 

and let 𝑧 = ℎ(𝑡, 𝑥)   be an isolated root of 𝑔(𝑡, 𝑥, 𝑧, 0) = 0 . 

Assume that the following conditions are satisfied for all 
(𝑡, 𝑥, 𝑧 − ℎ(𝑡, 𝑥)  , 𝜀) ∈ [0, ∞) × 𝐷𝑥 × 𝐷𝑣 × [0, 𝜀0]  for some 

domains 𝐷𝑥 ⊂ 𝑅𝑛  and 𝐷𝑣 ⊂ 𝑅𝑚 , which contain their 

respective origins. 

 

(A1) On any compact subset of 𝐷𝑥 × 𝐷𝑣, the functions f and 

g, their first partial derivatives with respect to (𝑥, 𝑧 , 𝜀) and the 

first partial derivative of g with respect to t are continuous and 

bounded. ℎ(𝑡, 𝑥)  and [𝜕𝑔(𝑡, 𝑥, 𝑧, 0)/𝜕𝑧]  have bounded first 

partial derivatives with respect to their arguments, 

and [𝜕𝑓 (𝑡, 𝑥, ℎ(𝑡, 𝑥), 0)/𝜕𝑥] is Lipschitz in x, uniformly in t, 

and the initial data 𝜉(𝜀) and 𝜂(𝜀) are smooth functions of 𝜀. 

 

(A2) The origin is an exponentially stable equilibrium point 

of the reduced system (2). There exists a Lyapunov function 

𝑉(𝑡, 𝑥) that satisfies 

𝑊1(𝑥) ≤ 𝑉(𝑡, 𝑥) ≤ 𝑊2(𝑥)                                                     (4) 

𝜕𝑉

𝜕𝑡
(𝑡, 𝑥) +

𝜕𝑉

𝜕𝑥
(𝑡, 𝑥)𝑓(𝑡, 𝑥, ℎ(𝑡, 𝑥), 0) ≤ −𝑊3(𝑥)                    (5) 

for all (𝑡, 𝑥) ∈ [0, ∞) × 𝐷𝑥 , where 𝑊1, 𝑊2, 𝑊3  are 

continuous positive-definite functions on 𝐷𝑥, and let c be a non-

negative number such that {𝑥 ∈ 𝐷𝑥|𝑊1(𝑥) ≤ 𝑐} is a compact 

subset of 𝐷𝑥. 

 

(A3) The origin is an exponentially stable equilibrium point 

of the boundary layer system (3), uniformly in (𝑡, 𝑥). Let 𝑅𝑣 ⊂
𝐷𝑣  be the region of attraction of (𝜕𝑣/𝜕𝜏 )  =   𝑔(0, 𝜉0, 𝑣 +
 ℎ(0, 𝜉0), 0), and let 𝛺𝑣  be a compact subset of 𝑅𝑣 . Then, for 

each compact set 𝛺𝑥 ⊂ {𝑥 ∈ 𝐷𝑥|𝑊2(𝑥) ≤ 𝜌𝑐, 0 < 𝜌 < 1} , 

there exists a positive constant 𝜀∗ such that for all t ≥ 0, 𝜉0 ∈
𝛺𝑥 , 𝜂0 − ℎ(0, 𝜉0) ∈ 𝛺𝑣 , and 0 < 𝜀 < ε∗ , (1) has a unique 

solution 𝑥(𝑡, 𝜀)  on [0, ∞), and 𝑥(𝑡, 𝜀) − 𝑥𝑟(𝑡) = 𝑂(𝜀)  holds 

uniformly for  𝑡 ∈ [0, ∞), where 𝑥𝑟(𝑡)  is the solution of the 

reduced system (2). 

 
Remark 1: Assumption (A3) in Theorem 1 can be verified 

locally via linearization [5]. It can be shown that if there exists 

𝜑0 > 0  such that the Jacobian matrix (𝜕𝑔 𝜕𝑦⁄ ) satisfies the 

eigenvalue condition 𝑅𝑒[𝜆{𝜕𝑔(𝑡, 𝑥, 𝑣 + ℎ(𝑡, 𝑥),0) 𝜕𝑣⁄ }] ≤

−𝜑0 <  0 for all (𝑡, 𝑥) ∈ [0, ∞) × 𝐷𝑥, then Assumption (A3) is 

satisfied. 

B.  Problem statement 

Consider the following uncertain system  

𝑥̇𝑖 = 𝑓𝑖(𝑥̅𝑖) + 𝑔𝑖(𝑥̅𝑖)(𝑥𝑖+1 + 𝛿𝑖(𝑥̅𝑖))             𝑖 = 1, … , 𝑛 − 1 

𝑥̇𝑛 = 𝑓𝑛(𝑥̅𝑛) + 𝑔𝑛(𝑥̅𝑛)(𝑢 + 𝛿𝑛(𝑥̅𝑛))                                   

𝑦 = 𝑥1                                                                                             (6) 

where 𝑥̅𝑖 = [𝑥1, 𝑥2, … , 𝑥𝑖]
𝑇 ∈ 𝑅𝑖 ,  𝑢 ∈ 𝑅  and 𝑦 ∈ 𝑅  are the 

system states, control input and system output respectively. 𝛿𝑖 

and 𝛿𝑛  are uncertain nonlinearities. It is noted that 𝛿𝑖   are 

unmatched uncertainties and 𝛿𝑛  is matched uncertainty. 

𝑓𝑖: 𝐷𝑥̅𝑖
→ 𝑅 ,  𝑔𝑖: 𝐷𝑥̅𝑖

→ 𝑅,  𝑓𝑛: 𝐷𝑥̅𝑛
→ 𝑅 , 𝑔𝑛: 𝐷𝑥̅𝑛

→ 𝑅  are 

continuously differentiable non-linear functions in their 

arguments. 

The objective of this paper is to design a tracking control law 𝑢 
for the nonlinear system (6) such that the output 𝑦 follows the 

desired trajectory 𝑦𝑑. 

 

Assumption 1:  𝑔𝑖(𝑥̅𝑖) and 𝑔𝑛(𝑥̅𝑛)  are either positive or 

negative. Without lossing the generality, we assume 𝑔𝑖(𝑥̅𝑖) >
0 and 𝑔𝑛(𝑥̅𝑛) > 0. 

 

III. MAIN RESULTS 

A. Controller design 

The control is developed by combination of backstepping, 

and singular perturbation theory. Similar to the backstepping 

method, this design procedure contains n steps. Employing 
time-scale separation concept, the unknown uncertainties and 

virtual control laws 𝛼𝑖, i = 1, . . . , n − 1 are obtained at each 

step. Finally, the actual control law u is designed at step n. The 

design procedure is presented in the following. Introduce the 

change of coordinates 𝑧1 = 𝑥1 − 𝑦𝑑 and  𝑧𝑖 = 𝑥𝑖 − 𝛼𝑖−1 where 

𝑖 =  2, . . . , 𝑛. 
 

Step 1. We start with the first equation of (6) 

𝑧̇1(𝑡) = 𝑓1(𝑥1) + 𝑔1(𝑥1)(𝑥2 + 𝛿1(𝑥1)) − 𝑦̇𝑑                        (7) 

First, to estimate the unknown 𝛿1(𝑥1), we design the filter 

𝑧̇̂1(𝑡) = 𝑓1(𝑥1) + 𝑔1(𝑥1)(𝑥2 −
1

𝜀1,1
(𝑧̂1 − 𝑧1)) − 𝑦̇𝑑    

𝑧̂1(0) = 𝑧1(0)                                                                        (8) 

where 𝜀11 ≪ 1. Then from (7) and (8), the variable 

𝑙1 =
𝑧̂1−𝑧1

𝜀1,1
                                                                               (9) 

Satisfies 



𝜀1,1𝑙1̇ = 𝑔1(𝑥1)(−𝑙1 − 𝛿1(𝑥1))                                            (10) 

When 𝜀1,1 is small, 𝑙1 evolves in a faster time scale than 𝑧1, and 

reaches a small neighborhood of the manifold 

𝑙1 = −𝛿1(𝑥1)                                                                        (11) 

by considering 𝑥2 as the control variable. The derivative of 𝑧1 

is given as 

𝑧̇1(𝑡) = 𝑓1(𝑥1) + 𝑔1(𝑥1)(𝑧2 + 𝛼1 + 𝛿1(𝑥1)) − 𝑦̇𝑑                (12) 

Then, 𝛼1 as the first virtual controller can be specified as the 

solution of 

𝑓1(𝑥1) + 𝑔1(𝑥1)(𝑧2 + 𝛼1 + 𝛿1(𝑥1)) − 𝑦̇𝑑  = −𝑘1𝑧1           (13) 

resulting in the asymptotically stable closed-loop dynamics 

𝑧̇1 = −𝑘1z1 for the first subsystem.  𝑘1> 0 is the first control 

gain. According to the following fast dynamics based on time-

scale separation concept, an approximate virtual controller is 

designed 

𝜀1,2𝛼̇1 = −𝑠𝑖𝑔𝑛 (
∂𝑄1

∂𝛼1
) 𝑄1(𝑡, 𝑧̅2, 𝛼1, 𝑙1)                                     (14) 

with the initial condition 𝛼1(0) = 𝛼1,0, 𝜀1,2 ≪ 1, 𝑧̅2 = [𝑧1, 𝑧2]𝑇 

𝑄1(𝑡, 𝑧̅2, 𝛼1, 𝑙1) = 𝑘1𝑧1 + 𝑓1(𝑥1)  

                             + 𝑔1(𝑥1)(𝑧2 + 𝛼1 − 𝑙1) − 𝑦̇𝑑                 (15) 

Where from (11),  𝛿1(𝑥1) is replaced by −𝑙1. 

 

Let 𝛼1 = ℎ1(𝑡, 𝑧̅2, 𝑙1) be an isolated root of 𝑄1(𝑡, 𝑧̅2, 𝛼1, 𝑙1) =
0. Then the reduced system is defined as 

𝑧̇1 = −𝑘1𝑧1          𝑧1(0) = 𝑧1,0                                             (16) 

and the boundary layer system can be represented by 

𝑑𝑦11

𝑑𝜏11
= 𝑔1(𝑥1)(−𝑦11)                                                           (17) 

𝑑𝑦12

𝑑𝜏12
= −𝑠𝑖𝑔𝑛 (

∂𝑄1

∂𝛼1
) 𝑄1(𝑡, 𝑧̅2, 𝑦12 + ℎ1(𝑡, 𝑧̅2, 𝑙1), 𝑙1)            (18) 

Where 𝑦11 = 𝑙1 + 𝛿1(𝑥1) , y12 = α1 − ℎ1(𝑡, 𝑧̅2, 𝑙1) , 𝜏11 =
𝑡

𝜀1,1
 

and 𝜏12 =
𝑡

𝜀1,2
. 

 

Considering the control Lyapunov function 𝑉1 =
1

2
𝑧1

2 and using 

the reduced system (16), it is deduced that 

𝑉̇1 = −𝑘1𝑧1
2                                                                          (19) 

Step 𝑖 (𝑖 =  2, . . . , 𝑛 −  1): The derivative of 𝑧𝑖 is expressed 

as 

𝑧̇𝑖(𝑡) = 𝑓𝑖(𝑥̅𝑖) + 𝑔𝑖(𝑥̅𝑖)(𝑥𝑖+1 + 𝛿𝑖(𝑥̅𝑖)) − 𝛼̇𝑖−1                  (20) 

Similar to step 1, first to estimate the unknown 𝛿𝑖(𝑥̅𝑖), we 
design the filter 

𝑧̇̂𝑖(𝑡) = 𝑓𝑖(𝑥̅𝑖) + 𝑔𝑖(𝑥̅𝑖)(𝑥𝑖+1 −
1

𝜀𝑖,1
(𝑧̂𝑖 − 𝑧𝑖)) − 𝛼̇𝑖−1   

𝑧̂𝑖(0) = 𝑧𝑖(0)                                                                       (21) 

where 𝜀𝑖1 ≪ 1. Then from (20) and (21), the variable 

𝑙𝑖 =
𝑧̂𝑖−𝑧𝑖

𝜀𝑖,1
                                                                               (22) 

Satisfies 

𝜀𝑖,1𝑙𝑖̇ = 𝑔𝑖(𝑥̅𝑖)(−𝑙𝑖 − 𝛿𝑖(𝑥̅𝑖))                                               (23) 

When 𝜀𝑖1 is small, 𝑙𝑖 evolves in a faster time scale than 𝑧𝑖, and 

reaches a small neighborhood of the manifold 

𝑙𝑖 = −𝛿𝑖(𝑥̅𝑖)                                                                        (24) 

we should find 𝛼𝑖 such that 

𝑓𝑖(𝑥̅𝑖) + 𝑔𝑖(𝑥̅𝑖)(𝑥𝑖+1 + 𝛿𝑖(𝑥̅𝑖)) − 𝛼̇𝑖−1 = −𝑘𝑖𝑧𝑖                 (25) 

where 𝑘𝑖 > 0 is the 𝑖th positive control gain. In this step, the 

time derivative of the virtual control input 𝛼̇𝑖−1  is appeared 

which has been designed in the previous step 𝛼̇𝑖−1 =

−𝑠𝑖𝑔𝑛 (
∂𝑄𝑖−1

∂𝛼𝑖−1
) 𝑄𝑖−1(𝑡, 𝑧̅𝑖 , 𝛼𝑖−1, 𝑙𝑖)/𝜀𝑖−1,2 . Therefore, the 

“explosion of complexity” arising from the calculation of this 

term is avoided.  

The 𝑖th approximate virtual controller can be designed as the 

following𝑖th fast dynamic 

𝜀𝑖,2𝛼̇𝑖 = −𝑠𝑖𝑔𝑛 (
∂𝑄𝑖

∂𝛼𝑖
) 𝑄𝑖(𝑡, 𝑧̅𝑖+1, 𝛼𝑖 , 𝑙𝑖)                                    (26) 

with the initial condition 𝛼𝑖(0) = 𝛼𝑖,0 , 𝜀𝑖,2 ≪ 1 , 𝑧̅𝑖+1 =
[𝑧1, … , 𝑧𝑖+1]𝑇 

𝑄𝑖(𝑡, 𝑧̅𝑖+1, 𝛼𝑖 , 𝑙𝑖) = 𝑘𝑖𝑧𝑖 + 𝑓𝑖(𝑥̅𝑖)  

                         +𝑔𝑖(𝑥̅𝑖)((𝑧𝑖+1 + 𝛼𝑖 − 𝑙𝑖) − 𝛼̇𝑖−1                   (27) 

Where from (24),  𝛿𝑖(𝑥̅𝑖) is replaced by −𝑙𝑖. 

 

Let 𝛼𝑖 = ℎ𝑖(𝑡, 𝑧̅𝑖+1, 𝑙𝑖)  be an isolated root of 

𝑄𝑖(𝑡, 𝑧̅𝑖+1, 𝛼𝑖 , 𝑙𝑖) = 0. Then, the reduced system is defined as 

𝑧̇𝑖 = −𝑘𝑖𝑧𝑖          𝑧𝑖(0) = 𝑧𝑖,0                                               (28) 



and the boundary layer system can be represented by 

𝑑𝑦𝑖1

𝑑𝜏𝑖1
= 𝑔𝑖(𝑥̅𝑖)(−𝑦𝑖1)                                                             (29) 

𝑑𝑦𝑖2

𝑑𝜏𝑖2
= −𝑠𝑖𝑔𝑛 (

∂𝑄𝑖

∂𝛼𝑖
) 𝑄𝑖(𝑡, 𝑧̅𝑖+1, 𝑦𝑖2 + ℎ𝑖(𝑡, 𝑧̅𝑖+1, 𝑙𝑖), 𝑙𝑖)         (30) 

Where 𝑦𝑖1 = 𝑙𝑖 + 𝛿𝑖(𝑥̅𝑖) , 𝑦𝑖2 = 𝛼𝑖 − ℎ𝑖(𝑡, 𝑧̅𝑖+1, 𝑙𝑖) , 𝜏𝑖1 =
𝑡

𝜀𝑖,1
 

and  𝜏𝑖2 =
𝑡

𝜀𝑖,2
 . 

Considering the control Lyapunov function 𝑉𝑖 = 𝑉𝑖−1 +
1

2
𝑧𝑖

2  

and using the reduced system (28), it is deduced that 

𝑉̇𝑖 =  − ∑ −𝑘𝑗𝑧𝑗
2𝑖

𝑗=1                                                             (31) 

Step n: In the last step, the actual control input 𝑢 appears 

and is at our disposal. We derive the 𝑧𝑛dynamics 

𝑧̇𝑛 = 𝑓𝑛(𝑥̅𝑛) + 𝑔𝑛(𝑥̅𝑛)(𝑢 + 𝛿𝑛(𝑥̅𝑛)) − 𝛼̇𝑛−1                        (32) 

we design the filter 

𝑧̇̂𝑛(𝑡) = 𝑓𝑛(𝑥̅𝑛) + 𝑔𝑛(𝑥̅𝑛)(𝑢 −
1

𝜀𝑛,1
(𝑧̂𝑛 − 𝑧𝑛)) − 𝛼̇𝑛−1   

𝑧̂𝑛(0) = 𝑧𝑛(0)                                                                      (33) 

where 𝜀𝑛1 ≪ 1. From (32) and (33), the variable 

𝑙𝑛 =
𝑧̂𝑛−𝑧𝑛

𝜀𝑛,1
                                                                            (34) 

Satisfies 

𝜀𝑛,1𝑙𝑛̇ = 𝑔𝑛(𝑥̅𝑛)(−𝑙𝑛 − 𝛿𝑛(𝑥̅𝑛))                                         (35) 

When 𝜀𝑛1 is small, 𝑙𝑛 evolves in a faster time scale than 𝑧𝑛, and 

reaches a small neighborhood of the manifold 

𝑙𝑛 = −𝛿𝑛(𝑥̅𝑛)                                                                       (36) 

we now obtain an approximate actual control input via time-

scale separation to satisfy 

𝑓𝑛(𝑥̅𝑛) + 𝑔𝑛(𝑥̅𝑛)(𝑢 + 𝛿𝑛(𝑥̅𝑛)) − 𝛼̇𝑛−1 = −𝑘𝑛𝑧𝑛               (37) 

as 

𝜀𝑛,2𝑢̇ = −𝑠𝑖𝑔𝑛 (
∂𝑄𝑛

∂𝑢
) 𝑄𝑛(𝑡, 𝑧̅𝑛 , 𝑢, 𝑙𝑛)                                   (38) 

with the initial condition 𝑢(0) = 𝑢0 , 𝜀𝑛 ≪ 1 and 

𝑄𝑛(𝑡, 𝑧̅𝑛 , 𝑢, 𝑙𝑛) = 𝑓𝑛(𝑥̅𝑛) + 𝑔𝑛(𝑥̅𝑛)(𝑢 − 𝑙𝑛) − 𝛼̇𝑛−1           (39) 

𝑧̅𝑛 = [𝑧1, … , 𝑧𝑛]𝑇. 𝑘𝑛 is the nth positive control gain. 

 

Let 𝑢 = ℎ𝑛(𝑡, 𝑧̅𝑛 , 𝑙𝑛) be an isolated root of 𝑄𝑛(𝑡, 𝑧̅𝑛 , 𝑢, 𝑙𝑛) = 0. 
Then the reduced system is defined as 

𝑧̇𝑛 = −𝑘𝑛𝑧𝑛          𝑧𝑛(0) = 𝑧𝑛,0                                           (40) 

and the boundary layer system can be represented by 

𝑑𝑦𝑛1

𝑑𝜏𝑛1
= 𝑔𝑛(𝑥̅𝑛)(−𝑦𝑛1)                                                          (41) 

𝑑𝑦𝑛2

𝑑𝜏𝑛2
= −𝑠𝑖𝑔𝑛 (

∂𝑄𝑛

∂𝑢
) 𝑄𝑛(𝑡, 𝑧̅𝑛 , 𝑦𝑛2 + ℎ𝑛(𝑡, 𝑧̅𝑛 , 𝑙𝑛), 𝑙𝑛)         (42) 

Where 𝑦𝑛1 = 𝑙𝑛 + 𝛿𝑛(𝑥̅𝑛), 𝑦𝑛2 = 𝑢 − ℎ𝑛(𝑡, 𝑧̅𝑛 , 𝑙𝑛), 𝜏𝑛1 =
𝑡

𝜀𝑛,1
 

and  𝜏𝑛2 =
𝑡

𝜀𝑛,2
 . 

Considering the control Lyapunov function 𝑉𝑛 = 𝑉𝑛−1 +
1

2
𝑧𝑛

2 

and using the reduced system (40), it is deduced that 

𝑉̇𝑛 =  − ∑ 𝑘𝑗𝑧𝑗
2𝑛

𝑗=1                                                                (43) 

B. Stability analysis 

For the stability analysis of the proposed control system, we 

present the following theorem using Tikhonov’s theorem. 

 
Theorem2: Consider the singular perturbation problem of 

the system (6) and the controllers (14), (26), (38). Assume that 

the following conditions are satisfied for all [𝑡, 𝑧̅𝑖+1, 𝛼𝑖 −
ℎ𝑖(𝑡, 𝑧̅𝑖+1, 𝑙𝑖) , 𝜀𝑖] ∈ [0, ∞) × 𝐷𝑧̅𝑖+1

× 𝐷𝑦𝑖2
× [0, 𝜀0)  for some 

domains 𝐷𝑧̅i+1
⊂ 𝑅𝑖+1 and 𝐷𝑦𝑖2

⊂ 𝑅 , which contain their 

respective origins, where  𝑖 = 1, . . . , 𝑛, 𝑧̅𝑛+1 = 𝑧̅𝑛 , 𝐷𝑧̅𝑛+1
=

𝐷𝑧̅𝑛
and 𝛼𝑛 = 𝑢. 

 

(𝐵1) On any compact subset of 𝐷𝑧̅𝑖+1
× 𝐷𝑦𝑖2

, the functions 

𝑄𝑖, their first partial derivatives with respect to (𝑧̅𝑖+1, 𝛼𝑖) and 

the first partial derivative of 𝑄𝑖with respect to 𝑡 are continuous 

and bounded. Also ℎ𝑖(𝑡, 𝑧̅𝑖+1, 𝑙𝑖) and (𝜕𝑄𝑖/𝜕𝛼𝑖)have bounded 

first derivatives with respect to their arguments, (𝜕𝑄𝑖/𝜕𝑧̅𝑖+1) is 

Lipschitz in 𝑧̅𝑖+1, uniform in t.  

 

(B2) 𝜕(𝑔𝑖(𝑥̅𝑖)𝑦𝑖1) 𝜕𝑦𝑖1⁄  and (𝜕𝑄𝑖 𝜕𝑦𝑖2⁄ )  are bounded below 

by some positive constant for all (𝑡, 𝑧̅𝑖+1) ∈ [0, ∞) × 𝐷𝑧̅𝑖+1
.  

 

Then, the origins of (17), (18), (29), (30), (41) and (42) are 

exponentially stable. Besides, let 𝛺𝑦𝑖1
be a compact subset of 

𝛤𝑦𝑖1
,where 𝛤𝑦𝑖1

⊂ 𝐷𝑦𝑖1
, is the region of attraction of the 

autonomous system (𝑑𝑦𝑖1/𝑑𝜏𝑖1) = 𝑔𝑖(𝑥̅𝑖)(−𝑦𝑖1) . Moreover, 

let 𝛺𝑦𝑖2
be a compact subset of 𝛤𝑦𝑖2

,where 𝛤𝑦𝑖2
⊂ 𝐷𝑦𝑖2

, is the 

region of attraction of the autonomous system (𝑑𝑦𝑖2/𝑑𝜏𝑖2) =

−𝑠𝑖𝑔𝑛 (
∂𝑄𝑖

∂𝛼𝑖
) 𝑄𝑖(0, 𝑧̅𝑖+1, 𝑦𝑖2 + ℎ𝑖(0, 𝑧̅𝑖+1, 𝑙𝑖), 𝑙𝑖)  with 𝑧̅𝑖+1,0 =

[𝑧1,0, … , 𝑧𝑖+1,0]𝑇 . Then, for each compact subset 𝛺𝑧̅𝑛
⊂ 𝐷𝑧̅𝑛

, 

there exist positive constant 𝜀𝑖,1
∗, 𝜀𝑖,2

∗ and 𝑇 > 0 such that for 

all 𝑡 ≥ 0  , 𝑧̅𝑖+1,0 ∈ 𝛺𝑧̅𝑖+1
, 𝛼𝑖,0 − ℎ𝑖(0, 𝑧̅𝑖+1,0, 𝑙𝑖) ∈ 𝛺𝑦𝑖2

 , 0 <

𝜀𝑖,1 < 𝜀𝑖,1
∗and 0 < 𝜀𝑖,2 < 𝜀𝑖,2

∗ , the system of (6), (14), (26) and 



(38) has the unique solution 𝑥𝑖(𝑡), 𝑖 = 1, … , 𝑛  on [0, ∞), and 

𝑥1,𝜀1
(𝑡) = 𝑦𝑑(𝑡) + 𝑂(𝜀1) holds uniformly for 𝑡 ∈ [𝑇, ∞). 

 

Proof: For the use of Tikhonov’s theorem, it should be 

verified that the conditions in our theorem satisfy assumptions 

(A1), (A2) and (A3). First, Assumption (B1) directly implies 

that Assumption (A1) holds. Second, we can show easily that 
Assumption (A2) holds because the origins of the reduced  

system (16), (28) and (40) are exponentially stable equilibrium 

points, that is, ‖𝑧̅𝑛(𝑡)‖ ≤ ‖𝑧̅𝑛,0‖𝑒−𝑤0𝑡 for t ≥ 0 and for some 

𝑤0 > 0  where 𝑧̅𝑛,0 = [𝑧1,0, … , 𝑧𝑛,0]𝑇 . From the converse 

Lyapunov theorem, it follows that there exists a Lyapunov 

function 𝑉𝑐  such that 

𝑤1‖𝑧̅𝑛‖2 ≤ 𝑉𝑐(𝑡, 𝑧̅𝑛) ≤ 𝑤2‖𝑧̅𝑛‖2                                         (43)                  

𝜕𝑉𝑐

𝜕𝑡
(𝑡, 𝑧̅𝑛) +

𝜕𝑉𝑐

𝜕𝑧̅𝑛
(𝑡, 𝑧̅𝑛)𝑀𝑧̅𝑛 ≤ −𝑤3‖𝑧̅𝑛‖2                            (44)                          

where 𝑤1 , 𝑤2 , 𝑤3  are positive constants and 𝑀 =
𝑑𝑖𝑎𝑔[−𝑚1, . . . , −𝑚𝑛] denotes a diagonal matrix. We note that 

any positive 𝑐 can be chosen in Assumption (A2), and so 𝛺𝑧̅𝑛
⊂

{𝑧̅𝑛 ∈ 𝐷𝑧̅𝑛
|𝑤1(𝑧̅𝑛) ≤ 𝜌𝑐, 0 < 𝜌 < 1}  can be any compact 

subset of 𝐷𝑧̅𝑛
. 

Finally, we show from Remark 1 that assumption (A3) 
holds. The exponential stability of the boundary layer system 

(17), (18), (29), (30), (41) and (42) can be easily obtained 

locally by linearization with respect to 𝑦𝑖1  and 𝑦𝑖2 . Using 

Assumption 1 and (B2) yields 

𝑠𝑖𝑔𝑛 (
𝜕(𝑔𝑖(𝑥̅𝑖)𝑦𝑖1)

𝜕𝑦𝑖1
) = 𝑔𝑖(𝑥̅𝑖) > 0                                    (45) 

𝑠𝑖𝑔𝑛 (
𝜕𝑄𝑖

𝜕𝑦𝑖2
) = 𝑔𝑖(𝑥̅𝑖) > 0                                                    (46) 

This implies that the boundary layer system has a locally 

exponentially stable origin. Therefore, we can apply 

Tikhonov’s theorem. Accordingly, for each compact subset 

𝛺𝑧̅𝑛
⊂ 𝐷𝑧̅𝑛

, there exist positive constant 𝜀𝑖,1
∗, 𝜀𝑖,2

∗ and 𝑇 > 0 

such that for all 𝑡 ≥ 0 , 𝑧̅𝑖+1,0 ∈ 𝛺𝑧̅𝑖+1
, 𝛼𝑖,0 − ℎ𝑖(0, 𝑧̅𝑖+1,0, 𝑙𝑖) ∈

𝛺𝑦𝑖2
 , 0 < 𝜀𝑖,1 < 𝜀𝑖,1

∗and 0 < 𝜀𝑖,2 < 𝜀𝑖,2
∗  , the system of (6), 

(14), (26) and (38) has the unique solution 𝑥𝑖(𝑡), 𝑖 = 1, … , 𝑛  on 

[0, ∞), and 𝑥1,𝜀1
(𝑡) = 𝑦𝑑(𝑡) + 𝑂(𝜀1) holds uniformly for 𝑡 ∈

[𝑇, ∞). 
 

IV. SIMULATION RESULTS 

To validate the effectiveness of the proposed control 
approach, consider the following nonlinear system in the 

presence of both matched and unmatched uncertainties. 

𝑥̇1 = 0.5 𝑥1 + (1 + 0.1𝑥1
2)(𝑥2 − (2 + sin (𝑥1))  

𝑥̇2 = 𝑥1𝑥2 + (2 + cos(𝑥1))(𝑢 − 0.3(𝑒𝑥1 + 𝑒−𝑥2 ))            (47) 

Where 𝛿1(𝑥1) = −(2 + sin (𝑥1)  is unmatched and 

𝛿2(𝑥1, 𝑥2) = −0.3(𝑒𝑥1 + 𝑒−𝑥2) is matched uncertainty of the 

system.  

 

The control object is to synthesize an adaptive control law u for 

system (47) such that the state 𝑥1 tracks the reference signal 

𝑦𝑑 = cos(1.5𝑡 + 𝜋/3) + 0.1sin (𝑡). 

The initial conditions set to 𝑥1(0) = 1, 𝑥2(0) = 1, 𝑢(0) = 0, 

𝛼1(0) = 0, 𝑧̂1(0) = 0.5, 𝑧̂2(0) = 1 and the design parameters 

for the proposed control system are adopted as follows: 𝑘1 =
𝑘1 = 2, 𝜀1,1 = 𝜀1,2 = 𝜀2,1 = 𝜀2,2 = 0.01.  

 

Figs. 1-3 show the tracking performance, state trajectory of 

𝑥2 and the control input, respectively. These figures reveal that 
the proposed approach has the good control and tracking 

performance regardless matched and unmatched uncertainties. 

In addition, note that the states and the control input in the 

controlled closed-loop system are bounded. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Tracking performance 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 2.  state trajectory of 𝑥2 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Control input 𝑢 

 

V. CONCLUSION 

 

In this paper, time-scale separation has been employed in 

backstepping procedure for stabilization of a class of nonlinear 

systems in the presence of matched and unmatched 

uncertainties. This approach can overcome the uncertainties 

and also eliminates the problem of “explosion of complexity” 

caused by the traditional backstepping technique. Based on 
Tikhonov’s theorem in singular perturbation theory, the closed 

loop stability has been proved. The proposed controller 

guarantees the boundedness of all the signals in the closed-loop 

system, while the output of the system tracks the desired signal 

with bounded error. 
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