
1

Composition of Digital All-Pass Lattice Filter and
Gradient Adaptive Filter for Amplitude and Delay
Estimation of a Sinusoid With Unknown Frequency

M. Mojiri and M. A. Ghadiri-Modarres

Abstract— A composite structure for joint amplitude and
time delay estimation of a delayed sinusoidal signal is pro-
posed in this paper. The proposed method composed of
a digital all-pass lattice structure and a gradient adaptive
structure. The lattice structure receives the reference sinu-
soidal signal and provides the desirable regressor signals for
the adaptive structure. Also, this structure is furnished with
a frequency estimation mechanism. Applying the regressor
signals, the delayed sinusoidal signal and the estimated fre-
quency, the adaptive structure which is a gradient based
filter estimates the amplitude and time-delay of the delayed
sinusoid. Simulations illustrate the desirable performance
of the proposed method.

Keywords— digital all-pass filter, lattice structure, adap-
tive filter, sinusoidal signals, amplitude estimation, time de-
lay estimation.

I. Introduction

Time delay estimation of two or more versions of a sig-
nal received at spatially separated sensors has been a ma-
jor research issue in the past two decades. The problem
finds many applications such as target localization, direc-
tion finding, speaker tracking, synchronization in commu-
nication receivers, biomedicine, radar and sonar ranging
and speed sensing [1]-[3]. Based on the knowledge of the
signal statistics, several batch estimators have been devel-
oped so far. When the characteristics of a signal is sta-
tionary a general methodology to estimate the time delay
is based on locating the peak value of the cross-correlation
function [4] or the generalized cross correlation function
[5] of the filtered version of the two received signals. This
approach can provide maximum likelihood estimation per-
formance when the signals and noises are Gaussian dis-
tributed [6], [7]. However, the resolution of the delay esti-
mate in these techniques is limited by the sampling period
[7]. Also, due to the finite observation time, an estimate of
the cross correlation is used which consequently affects the
accuracy of the proposed estimator. On the other hand,
several methods have been developed when the source sig-
nal is deterministic, specifically for a pure sinusoid that
commonly occurs in radar, sonar and digital communica-
tions applications. Some methods are quadrature delay
estimator (QDE) [8], [9], estimators based on phase differ-
ence of the discrete-time Fourier transforms of the received
signals [10]-[12] and estimators based on a combination of
cross correlation and autocorrelation [13].

The Authors are with the Department of Elec-
trical and Computer Engineering, Isfahan University
of Technology, Isfahan, Iran, 84156-83111, e-mails:
mohsen.mojiri@cc.iut.ac.ir, ma.ghadirimodarres@ec.iut.ac.ir

If the delay is time-varying due to relative source/recevier
motion, or if the delay estimate needs to be determined at
each new input sample, online or adaptive techniques are
usually preferred. For a special case, that is when both
the received signals are sinusoids with unity amplitude, [6]
provides a method for the online estimation of delay. In
practice, the relative amplitude of the signals is also un-
known and time varying [7]. In [7] a modification to [6] has
been presented which results in an adaptive filter that esti-
mates both delay and amplitude of a delayed sinusoid. In
order to implement the algorithms proposed in [6] and [7],
it is required to choose the sampling rate from a specific set
of permissible values which requires the knowledge of the
input signals frequency. However, the frequency of signals
may be unknown and time-varying. This brings about the
necessity of estimating the frequency.

The main contribution of this paper is the development
of a method for the online estimation of time delay and
relative amplitude of one of two received sinusoidal sig-
nals vis-a-vis the other. The proposed method comprises
an all-pass filter and an adaptive structure. The all-pass
filter which has a lattice structure receives the reference
sinusoidal signal and generates the suitable regressor sig-
nals for the adaptive structure. Also, an update law is
employed to tune the notch frequency of the filter on the
input sinusoidal signal. The adaptive structure which is a
gradient based adaptive filter estimates the amplitude and
time-delay by using the signals generated by the lattice
structure and minimizing a suitable error function. The
stability analysis is also carried out to ensure convergence
of the estimated values to the true values. Adaptive nature
of the proposed method enables tracking of slow variations
of time-delay and amplitude. The structural simplicity of
the proposed estimator makes it suitable for digital imple-
mentation both in hardware and software environments.

II. Adaptive Estimation of Delay and Amplitude

A. Introduction

Consider the following sinusoidal signals received at the
two sensors,

ua(t) = sin
(
ω0t + δ0

)
ub(t) = a0 sin

(
ω0(t − d0) + δ0

) (1)

where ω0 and δ0 are respectively the angular frequency
and initial phase. d0 represents the unknown difference in
arrival times at two receivers. a0 is a gain factor associated
with delayed sinusoid and is assumed to be unknown. Our
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aim is to find an adaptive algorithm for direct estimation
of a0 and d0. In order to avoid ambiguities, it is assumed
that the net phase shift ω0d0 lies within the interval [0, 2π).

Assume that the signals ua and ub are sampled with a
sampling period of T to generate the sequences

ua[n] = ua(nT ) = sin(ω0Tn + δ0)
ub[n] = ub(nT ) = a0 sin(ω0Tn + δ0 − ω0d0)

(2)

It is then possible to express ub[n] as

ub[n] = a0xT[n]w0 (3)

where w0 =
( − sin(ω0d0), cos(ω0d0)

)T and x[n] =(
x1[n], x2[n]

)T =
(
cos(ω0Tn+δ0), sin(ω0Tn+δ0)

)T. The
idea is to treat (3) as a system identification model with re-
gressor signals x1[n] and x2[n]. This idea requires a mecha-
nism to produce regressor signals. In [6] and [7], the regres-
sor signals have been generated by choosing the sampling
frequency from a specific set of permissible values based on
the input signals frequency, which restricts the sampling
frequency to specific values. On the other hand, there ex-
ist structures capable of generating the orthogonal signals
(sin / cos) from an input sinusoidal signal which can be used
for this purpose. The digital all pass lattice structure is one
of such structures that is reviewed in the next section.

B. Review of Lattice Structure

The digital all pass filter is a computationally efficient
signal processing building block which is quite useful for
many signal processing applications [14]. A suitable choice
of all-pass structure is the planar rotation lattice filter (Fig.
1), as the structure is theoretically stable and numerically
well behaved in time varying environments [15]. Tunable
planar rotations are best implemented by a sequence of
CORDIC rotations [16]. Each rotation angle θk, k = 1, 2 is
directly controlled via its own register in CORDIC. With
Ω denoting the notch frequency of (notch) filter F (z) =
1
2 (1 + A(z)) and B the 3-dB attenuation bandwidth, one
can show that [15]

θ1 = Ω − π

2
, Ω ∈ [0, π], sin θ2 =

1 − tan(B/2)
1 + tan(B/2)

The update law

θ1[n + 1] = θ1[n] − μ0e0[n]x1[n] (4)

is proposed to tune the notch frequency parameter θ1 [15].
In this update law, the error signal e0[n] is the output of the
notch filter F (z) and the regressor signal x1[n] is available
from the lattice filter (see Fig. 1). In the case of a sin-
gle sinusoid u[n] = ua[n] = sin

(
ω0Tn + δ0

)
applied to the

lattice structure, the update law (4) is shown to be asymp-
totically stable in the sense that sin θ1[n] → − cos ω0T as
n → ∞. This means that θ1[n] → ω0T − π/2 as n → ∞,
and therefore, the input signal frequency can be estimated
from θ1[n]+π/2

T .

Fig. 1. Digital all pass lattice filter (top) and two lossless filter-bank
(bottom) [15].

In this case, it can be observed that the lattice structure
has the steady state solution of

(
x̄1[n]
x̄2[n]

)
=

−1√
tan(B/2)

(
cos

(
ω0Tn + δ0

)
sin

(
ω0Tn + δ0

)
)

(5)

Therefore, with a gain scaling of −√
tan(B/2), we have

signals
(
x1[n], x2[n]

)
=

(
cos(ω0Tn + δ0), sin(ω0Tn + δ0)

)
which are suitable as the regressor signals.

C. Amplitude and Time-Delay Estimation

To derive the governing equations of the estimator
straightforward, it is assumed that the lattice structure
reaches to its steady state and provides the regressor sig-
nals

(
x1[n], x2[n]

)T and the frequency ω0.
Using the relation (3), the estimate of ub[n] denoted by

ûb[n], can be represented as

ûb[n] = a[n]xT[n]w[n] (6)

where w[n] =
( − sin(ω0d[n]), cos(ω0d[n])

)T. Define the
instantaneous error between ub[n] and its estimate ûb[n] as

e[n] = ub[n] − ûb[n]
= ub[n] − a[n]xT[n]w[n],

We are looking for those values of φ[n] = (a[n], d[n])T that
minimize a function of e[n]. A suitable and well-known
function is the instantaneous square error as

J(n, φ[n]) = 1
2e2[n]

= 1
2

(
ub[n] − a[n]xT[n]w[n])2

The gradient descent (GD) method provides a method of
adjusting the unknown parameter vector φ so that the cost
function J tends to its minimum point. In this method, any
unknown parameter moves to the opposite direction of the
variations of the function J with respect to that parameter.
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Fig. 2. Proposed adaptive structure for estimation of amplitude and
time delay.

If μ is a diagonal matrix with positive diagonal elements,
then the GD method is formulated as

φ[n + 1] = φ[n] − μ∇J
= φ[n] − μe[n]∇e[n] (7)

where

∇e[n] =
(∂e[n]

∂a[n]
,
∂e[n]
∂d[n]

)T

Following the GD method for the parameter vector φ =
(a, d)T, one will obtain the following difference equation

φ[n + 1] = φ[n] − μΓ[n]x[n]e[n] (8)

where

Γ[n] =
(

1 0
0 ω0a[n]

) (
sin(ω0d[n]) − cos(ω0d[n])
cos(ω0d[n]) sin(ω0d[n])

)

and μ = diag(μ1, μ2). μi, i = 1, 2 control the convergence
rate as well as the stability of the adaptive filter as can be
seen later.

The term ω0a[n] may be absorbed into μ2 without any
degrading effect on the basic features of the filter. Based on
this modification, the governing equations of the proposed
filter for amplitude and time-delay estimation of a delayed
sinusoid is

φ[n + 1] = φ[n] − μΓ[n]x[n]
(
ub[n] − a[n]xT[n]w[n]

)
(9)

where Γ[n] is redefined as

Γ[n] =
(

sin(ω0d[n]) − cos(ω0d[n])
cos(ω0d[n]) sin(ω0d[n])

)

Fig. 2 shows a block diagram representation of the pro-
posed adaptive filter. The main computation in this block
diagram is a rotation on the vector x[n] by the angle ω0d[n].
This rotation can be carried out by a sequence of CORDIC
rotations [16] and, it can efficiently be implemented on a
pipelined array of CORDIC processors [7]. Also, this rota-
tion evaluates −wT[n]x[n] (top output) which after multi-
plication by a[n] provides the estimate of the delayed signal
with a minus sign, i.e. −ûb[n].

D. Convergence Analysis

The GD method is guaranteed to converge to minimum
solution if the cost function is globally quadratic in param-
eters. Otherwise, i.e. if the form of the cost function is

not quadratic, like the present situation, a mathematical
proof should be given to guarantee the convergence of the
solutions of the GD method to the minimum point of the
cost function. Using the relation ub[n] = a0xT[n]w[n], the
equation (9) can be expressed as

φ[n + 1] = φ[n] − μΓ[n]x[n]xT[n](a0w0 − a[n]w[n])
(10)

where,

x[n]xT[n] =
(

cos2(ω0Tn + δ0) 1
2 sin 2(ω0Tn + δ0)

1
2 sin 2(ω0Tn + δ0) cos2(ω0Tn + δ0)

)

With the definition of μi = εμ̄i, i = 1, 2, where ε is a small
positive parameter, equation set (10) is in the standard
form to which the discrete averaging theorem can be ap-
plied (See Appendix). The corresponding average system
is1

φ[n + 1] = φ[n] − 1
2μΓ[n](a0w0 − a[n]w[n]) (11)

After doing calculations, we have

a[n + 1] = (1 − μ1
2 )a[n] + μ1

2 a0 cos
(
ω0(d[n] − d0)

)
d[n + 1] = d[n] − μ2

2 a0 sin
(
ω0(d[n] − d0)

)
(12)

The nonlinear difference equations (12) have a fixed point
at (ā, d̄) = (a0, d0). Linearizing these equations around the
fixed point results in,

e[n + 1] =
(

1 − μ1
2 0

0 1 − μ2
2 a0ω0

)
e[n] (13)

where e = (a, d)T − (a0, d0)T. The linear system (13) is
asymptotically stable if and only if |1 − μ1

2 | < 1, |1 −
μ2
2 a0ω0| < 1 or equivalently 0 < μ1 < 4, 0 < μ2 < 4

a0ω0
.

This implies that for this selection of step sizes μi, i = 1, 2,
(a0, d0)T is a locally asymptotically stable fixed point for
dynamical system (12). (a0, d0)T is also a fixed point for
(10), therefore, based on the averaging theory the update
laws (10) (and consequently (9)) are locally asymptotically
stable, in the sense that (a[n], d[n]) → (a0, d0) as n → ∞.

E. Comparison With Method of [7]

In comparison with the method of [7], the features of the
proposed method are as follows:
• To produce the regressor signals, the idea in [7] is to select
the sampling frequency as fs = 4rf0, r ∈ {1, 2, ...} which
restricts the sampling frequency to specific values based on
the input signals frequency. The input signal frequency
may be time-varying or even unknown. Frequency estima-
tion capability of the proposed method makes it applicable
in various sampling frequency independent of input signals
frequency.
• The GD method has been used to derive the govern-
ing equations of the adaptive part of both methods, but
absorbing ω0a[n] into μ2 makes the adaptive part of our
proposed method slightly simpler.

1Note that the average of x[n]xT[n] is 1
2
I2 where I2 is an 2 × 2

identity matrix.
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Fig. 3. Initiatory performance of the proposed algorithm in the fixed
parameters conditions, a) estimated frequency, b) estimated am-
plitude c) estimated time-delay.

• Basically, there is no difference between two methods in
noise analysis (bias and variance). Except that in the pro-
posed method the reference signal ua[n] passes through
a digital all-pass filter and therefore, the filtered noise is
added to the regressor signals x1[n] and x2[n]. However,
simulation results show that noise immunity feature of the
proposed method is desirable and competes with that of
the method proposed in [7].

III. Performance Study

In this section a number of simulation examples are given
to evaluate the performance of the proposed method. All
simulations are conducted in MATLAB/Simulink environ-
ment. In simulation examples, ua(t) = sin(2π × 1000t) is
assumed as a reference signal and the sampling frequency
is chosen as fs = 20kHz. The parameters of the lattice
structure are B = π

6 and μ0 = 0.04. The step sizes for the
adaptive filter are selected as μ1 = 0.2 and μ2 = 1

5000π .
In the first example the initiatory performance of the

proposed algorithm is evaluated. For this, a sinusoidal sig-
nal of amplitude a0 = 0.8 and time delay d0 = 0.4 ms is
assumed for ub(t). The estimated values of frequency, am-
plitude and time-delay are shown in Fig. 3. It is observed
that the estimated parameters converge to their nominal
values in about two cycles of the input signals.

In another simulation the capability of the proposed filter
in tracking step changes of the amplitude and time delay is
studied. It is assumed that the initial values of amplitude
and delay are specified as 0.8 and 0.35 ms and the filter is
on its nominal condition. Two simultaneous step changes
in amplitude from 0.8 to 0.5 and from 0.5 to 0.7, and in
time delay from 0.35 ms to 0.25 ms and from 0.25 ms to
0.4 ms occur at t = 7 ms and t = 12 ms, respectively. The
estimated values of frequency, amplitude and time delay
are shown in Fig. 4. It can be seen that the proposed
algorithm faithfully tracks step changes. Obviously, these
step changes have no effect on the estimated frequency

Fig. 5 illustrates the mean of the estimated parameters
for 500 independent runs of the proposed method. The
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Fig. 4. Performance of the proposed algorithm in tracking step
changes in amplitude and time delay, a) estimated frequency,
b) estimated amplitude, c) estimated time delay.
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Fig. 5. Illustration of the estimated parameters based on the mean
of 500 independent runs of the proposed method for SNRa =
SNRb = 17dB, a) frequency, b) amplitude, c) time-delay.

desirable performance of the proposed estimator in a noisy
environment can be seen from Fig. 5. Also, it can be seen
that while both inputs have the same signal-to-noise (SNR)
ratios (SNRa = SNRb = 17dB), the variances of amplitude
and time-delay are less than variance of frequency. This is
because of passing ua[n] through all-pass filter which causes
a filtered noise is added to the regressor signals.

IV. Conclusions

Mathematical formulation and performance evaluation
of an algorithm for amplitude and time delay estimation of
a delayed sinusoidal signal with unknown frequency is pre-
sented. The proposed algorithm comprises a digital all pass
filter and a gradient based adaptive filter. The proposed
algorithm is applicable at various sampling frequency inde-
pendent of the frequency of the input signal. Both portions
of the algorithm are simple and well suited for implemen-
tation on CORDIC processors. Simulation studies verify
the desirable performance of the proposed algorithm.
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Appendix

A simplified version of the discrete averaging theorem
can be stated as follows [17]. Consider the difference equa-
tion of the form

φ[n + 1] = φ[n] + εf(n, φ[n], ε)

where ε is a small positive parameter. Define the average
system as

φ[n + 1] = φ[n] + εf(φ[n])

where

f(φ) = lim
N→∞

1
N

N∑
n=0

f(n, φ, 0).

Assume that both systems have the same fixed point.
Then, the stability type of fixed point of the original system
can be inferred from that of the fixed point of the average
system.
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