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Abstract—Among the numerical methods used in the 

electromagnetic modeling and simulation of electrical systems, 

the iterative method is included. In this paper, different 

techniques are employed to a classical Gauss-Seidel Algorithm. 

It used to improve accuracy and convergence of the solutions 

for a common partial differential equation in finite difference 

method. The first method is named Double Convergence 

Method in which combinations of two Iteration Methods with 

different initial points are utilized. The second method is called 

Multi-level Convergence Method where, a mixture of multi 

Iteration Method with initial values obtained from previous 

processes using first, second, third order polynomial for the 

next round of iteration. The convergence time and accuracy of 

both methods are evaluated and compared using classical 

Gauss-Seidel Algorithm by solving various one dimensional 

partial differential equations. The aim of this paper is to reduce 

the number of iterations of this method in order to reduce the 

computing time and to improve the convergence speed.  

 
KeyWords— Convergence, Finite Difference Method, Iteration 

Method, Partial Differential Equations, Electromagnetics Fields.  

I. INTRODUCTION 

In general, every phenomenon in the world, whether 

mechanical such as heat or electrical such as magnetic or 

electric fields, can be described with the help of the laws of 

physics, which results in mathematical formulations of physical 

problem in terms of  partial differential, or integral equations 

relating various quantities of interest. Even though the 

derivation of the governing equations for most of the problems 

is not very hard, but finding analytical solutions in different 

shapes and geometries is a difficult task. In such cases, 

approximate methods of analysis offer alternative means of 

finding solutions. Among these, the finite difference scheme, 

the Finite Element techniques, and the boundary element 

methods are the most frequently used in literature. In finite 

difference approximation of a differential equation, the 

derivatives are replaced by the difference quotients found by 

the Taylor’s series expansion and the approximate solution is 

found at discrete mesh points of the domain [1-6]. The linear 

and non-linear Laplace’s or Poisson’s equation has been 

investigated in literature for different applications [7-11].  

The electromagnetic field analysis in electrical systems 

utilizing the finite difference (FD) and finite element (FE) 

methods gives fairly good agreement with experimental results. 

For example, the electrical machines [12-15] and other devices 

[16-18] have been analyzed utilizing the FE method and also 

the electromagnetics fields have been analyzed utilizing FD 

method [19-22].  

One of the most important techniques in solving the partial 

differential equations by using FDM is the iteration method 

(IM). In this method the finite deference equation is solved 

based on initial guesses for unknown parameters. Then the new 

results compare with previous results. These steps are repeated 

to achieve a proper tolerance. Gauss-Seidel, Jacobi, and 

Newton-Raphson are some of the most famous techniques in 

IM [1, 23]. Although, their implementation are so easy they 

suffer from long-time solution and divergence. Several 

modifications are applied to these techniques in the recent 

literatures [24].   

In this paper, two new techniques are presented to overcome 

the above mentioned drawbacks. In the first method the finite 

difference equation is solved by minimum number of grid 

points and then using these values an equation is developed. 

This equation provides suitable initial guesses for the desired 

number of grid points in the next round of iteration. Therefore, 

this technique is named double convergence method (DCM) 

since two rounds of iteration are processed. The second method 

is a combination of several Iteration Methods in which the 

initial values are obtained from previous processes. Again in 

every round of iteration either first, or second, or third degree 

equation is developed. These equations are used to produce the 

suitable initial guesses for the next round of iteration with more 

grid points. This procedure is repeated as many times until the 

desired number of points are achieve. This technique is named 

Multi-level Convergence Method (MCM). 

This paper is organized as follows: in section II the process 

of each methods are presented. The implementation of the 

methods in solving the partial differential equations is discussed 

in section III. Finally, section IV concludes the paper. 

II. DESCRIPTION OF THE METHODS 

Iteration method is a common technique in different software 

and applications. In this method the partial differential 

equations are solved by initial guesses for unknown parameters. 

Then new results are compared with previous results to achieve 



the desired tolerance. It is noteworthy that initial guesses plays 

significant role in convergence of this technique. The improper 

initial data selection leads to either long-time solution or 

divergence. The proposed methods are a linear system solver, 

using Gauss-Seidel iteration. These methods can be applied to 

general linear system, which are useful for Finite Element 

method since FEM usually needs a linear system solver.  

Different approaches are reported in [24-27] to improve these 

issues. However these techniques are not applicable and general 

for variety of equations. The implementation and description of 

the two methods are explained in the following manner. 

1) Double Convergence Method (DCM) 

In this method, the problem is solved utilizing the minimum 

number of grid points in the first step in order to come up with 

appropriate values for the grid points as well as a fast and 

speedy convergence. In this stage, if the problem is solved for 

m grid points, then a (m-1) order equation can be developed 

using least square method to fits these points. After that, the 

second round of iteration starts for n points. The initial values 

for the n points are obtained using the (m-1) order equation 

developed in pervious step. 

Considering m to be equal to 2 or 3, then the solution space 

is estimated by a linear equation or a quadratic equation which 

is well-suited for one dimensional Laplace’s or Poisson's 

equation. 

2) Multi-level convergence method (mcm) 

In this method, the problem is solved utilizing the m grid 

points in the first step. The grid points are doubled, and 

depending on m which is an odd integer number, a first, second, 

or third degree polynomial using least square method is 

developed in this study.  Hence, for each (m+1)/2 data points, a 

(m-1)/2 order curve is fitted through the grid point values.  

Next, the number of points is increased by (2m-1) in each step 

of iteration, and the problem is solved again for the new number 

grid points using the curves obtained in the previous iteration to 

estimate the initial guesses. Finally, this procedure is repeated 

as many times necessary to achieve the desired number of grid 

points. 

If m is considered to be equal 3, then the solution space is 

estimated by piecewise linear equations which are known as 

multi-grid method which has been reported in [28-30].   

It is noteworthy to mention that by increasing the value of m 

the accuracy of solution as well as the time of solution goes up. 

For example, assuming m=5, the solution space is estimated by 

quadratic equations which improves the accuracy at the expense 

of the solution time. 

III. COMPARATIVE STUDY OF THE METHODS 

In order to evaluate the proposed methods, the following one-

dimensional partial differential equation in finite area (

0 1x  ) is considered:   
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   (1) 

where, , , ,    , k1 and k2  are constant. 

Different values of constant parameters will produce three 

significant equations which are solved by the previously 

mentioned methods. 

 

1) Case I: Laplace's equation 

In this case, , ,and   are equal to zero. Therefore, the 

equation with two boundary conditions can be rewritten as;  
2

2
0

(0) 0, (1) 100

x

T T

 



  

    (2) 

The analytical solution of (2) is 

( ) 100 0 1T x x for x       (3) 

Fig. 1 and 2 show the solution time and the number of 

iterations versus the degree of approximation in DCM and 

MCM techniques, respectively. 

 Utilizing Gauss-Seidel method, the number of iterations as 

well as the solution time obtained for n=1025 grid points are 

1780152 times and 100 second, respectively. As depicted in 

Fig. 1, the time takes for DCM and MCM techniques are in 

[0.0063-0.0098] and [0.035-0.039] intervals respectively, 

which shows a much faster convergence time.  

The analytical solution for equation (3) is linear, hence the 

error for the solution in DCM and MCM techniques are almost 

the same and much more accurate than applying ordinary 

Gauss-Seidel method. This fact is also shown in Table I. 

 
Fig. 1.  The solution time versus equation degree for DC method 

in case I. 

 

 
Fig. 2.  The solution time versus equation degree for MC method 

in case I. 
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TABLE I 

NUMBER OF ITERATIONS, NUMBER OF STARTING GRID POINTS, DEGREES OF POLYNOMIAL, ERRORS AND SOLUTION TIME OF EQUATION FOR CASE I. 

Methods Number of  Iterations 
Number of Starting grid 

Points (m) 
Degrees of 

Polynomial 
Errors 

Solution 

Time(sec.) 

Gauss-Seidel 1780152 1025 -- 2.1e-6 100 

DCM 

 

0 1 2 1 0 0.0063 

2 1 3 2 0 0.0078 

22 1 4 3 3.4e-12 0.0082 

42 1 5 4 1.3e-11 0.0086 

67 1 6 5 2.5e-11 0.0091 

97 1 7 6 4e-11 0.0098 

 

MCM 

2 1 1 1 1 1 1 3 1 0 0.038 

42 1 1 1 1 1 1 5 2 1e-11 0.039 

97 1 1 1 1 1 1 7 3 3.6e-11 0.040 

171 1 1 1 1 1 1 9 4 8.2e-11 0.035 

264 1 1 1 1 1 1 11 5 1.4e-10 0.036 

 

2) Case II: Poisson's equation 

In this case ,  are equal to zero and  is (-200). 

Therefore, the equation with two boundary conditions can be 

rewritten as; 
2

2
200

(0) 0, (1) 10

x

T T

 
 


  

    (4) 

The analytical solution for equation (4) is 
2( ) 100 110 0 1T x x x for x        (5) 

Fig. 3 and Fig. 4 show the solution time and number of 

iteration versus the degree of approximation in DCM and MCM 

techniques for case II, respectively.  

 
Fig. 3.  The solution time versus equation degree for DC method in 

case II. 

 
Fig. 4.  The solution time versus equation degree for MC method in 

case II. 

 

Utilizing Gauss-Seidel method, the number of iterations as 

well as the solution time obtained for n=1025 grid points are 

1715580 times and 133 second, respectively. As depicted in 

Fig. 1, the time takes for DCM and MCM techniques are in 

[0.0087-130] and [0.032-33] intervals respectively, which 

shows much faster convergence time. Comparing the results 

obtained by these methods with the analytical solution show the 

accuracy of MCM and DCM are equal but better than applying 

ordinary Gauss-Seidel method.  

As given in (5), the analytical solution for this equation is 

quadratic, and also the error of solution in DCM (for 

degree>=2) and MCM (for degree>=1) are small and the 

solution times are minimum as shown in Table II. 
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TABLE II 

NUMBER OF ITERATIONS, NUMBER OF STARTING GRID POINTS, DEGREES OF POLYNOMIAL, ERRORS AND SOLUTION TIME OF EQUATION FOR CASE II. 

Methods Number of  Iterations 

Number of 

Starting 

grid Points 

(m) 

Degrees of 

Polynomial  Errors 
Solution 

Time(sec.) 

Gauss-

Seidel 
1715580 1025 -- 1e-4 133 

DCM 

 

0 1692099 2 1 1e-4 130 

2 1 3 2 0 0.0087 

22 1 4 3 8.8e-11 0.0090 

41 1 5 4 6e-10 0.0095 

65 1 6 5 1.3e-9 0.0098 

94 1 7 6 2.1e-9 0.010 

 

MCM 

2 39 144 509 1748 5838 18740 3 1 2.1e-3 33 

41 1 1 1 1 1 1 5 2 4.8e-10 0.039 

94 1 1 1 1 1 1 7 3 1.9e-9 0.041 

166 1 1 1 1 1 1 9 4 4.1e-9 0.032 

256 1 1 1 1 1 1 11 5 7.4e-9 0.036 

 

3) Case III: Sinusoidal equation 

In this case  is equal to zero,  is (- 2(5 ) ) and  is equal 

to -10. Therefore, the equation with two boundary conditions 

can be rewritten as; 
2

2

2
10 (5 ) sin(5 )

(0) 0, (1) 1

x
x

T T

 
 

  


  

    (6) 

The analytical solution for equation (6) can be written as; 
2( ) 5 6 sin(5 ) 0 1T x x x x for x          (7) 

Fig. 5 and Fig. 6 show the solution time versus the degree of 

approximation for different methods in this case.  

Employing Gauss-Seidel method, the number of iterations as 

well as the solution time obtained for n=1025 grid points are 

1868068 times and 258 second, respectively. As depicted in 

Fig. 1, the time takes for DCM and MCM techniques are in 

[227-253] and [13.5-79] intervals respectively, which shows 

much faster convergence time.  

The exact solution of equation (6) is a sinusoidal function, 

which can be represented by a unique power series expansion 

as a function of x. Hence, by increasing the value of m in DCM 

the convergence time will also decrease since the initial guesses 

move toward the analytical solution of the equation. The 

convergence time in MCM is smaller than the other methods. 

In addition, in MCM the accuracy of solution will improve as 

the value of m goes up. 

 
Fig. 5.  The solution time versus equation degree for DC method in 

case III. 
 

 
Fig. 6.  The solution time versus equation degree for MC method in 

case III 

-40

10

60

110

160

210

260

310

0

500000

1000000

1500000

2000000

2500000

1 2 3 4 5 6

S
o
lu

ti
o
n

 T
im

e 
(S

ec
.)

 

N
u

m
b

er
 o

f 
It

er
at

io
n

Equation Degree

First Iteration Second Iteration Time

0

10

20

30

40

50

60

70

80

90

0

2000

4000

6000

8000

10000

12000

14000

16000

1 2 3 4 5

S
o
lu

ti
o
n

 T
im

e 
(S

ec
.)

 

N
u

m
b

er
 o

f 
It

er
at

io
n

Equation Degree

First Iteration Second Iteration

Third Iteration Forth Iteration

Fifth Iteration Time



 

Finally, for case II the solution time versus number of 

iteration for different degrees of the developed polynomials are 

illustrated in Fig. 7 and Fig. 8 by DC and MC methods, 

respectively. Simulation results show good agreements 

between these two methods. The solution time in DCM is 

smaller than that of MCM. The reason for that is because the 

analytical solution for equation (5) is same as the fitted curve. 

Finally, number of iterations, number of starting grid points, 

degrees of polynomial, errors and solution time for different 

cases are shown in Table I, II, and III respectively. 

 
Fig. 7.  The solution time versus number of grid points for 

different equation degree for DCM in case II. 

 

 
Fig. 8.  The solution time versus number of grid points for 

different equation degree for MCM in case II. 
 

In this study one dimensional (1-D) case is studied, while the 

extension to two (2-D) and three dimensional (3-D) cases can 

be easily done. On the other hand, based on new method nature, 

the convergence and calculation time will be improved when 

the dimension of problem is increased. The new methods based 

on iterative techniques give a rapid result with a minimum error 

to reach the optimum convergence. 

 

TABLE III 

NUMBER OF ITERATIONS, NUMBER OF STARTING GRID POINTS, DEGREES OF POLYNOMIAL, ERRORS AND SOLUTION TIME OF EQUATION FOR CASE III. 

Methods Number of  Iterations 
Number of Starting 

grid Points (m) 
Degrees of 

Polynomial 
Error 

Solution 

Time(sec.) 

Gauss-Seidel 1868068 1025 -- 1e-4 258 

DCM 

 

0 1825371 2 1 3.7e-5 253 

2 2165958 3 2 3.7e-5 300 

22 2150676 4 3 3.7e-5 299 

40 1665445 5 4 3.7e-5 231 

66 398891 6 5 3.7e-5 55 

102 1623564 7 6 3.7e-5 227 

 

MCM 

2 44 164 544 1882 6361 20832 3 1 1.1e-4 79 

40 174 514 1559 4464 10918 15626 5 2 1.5e-4 14 

102 357 1003 2936 7773 15459 27692 7 3 6.6e-5 29 

178 482 1547 4459 10913 15625 40195 9 4 1.5e-4 13.5 

281 877 2198 6098 13564 21167 51751 11 5 9.5e-5 19.4 

IV. CONCLUSION 

In this paper two techniques for finite difference solution of 

partial differential equations are presented. These methods are 

used to solve three common partial differential equations based 

on iterative method. The two new methods focus on 

improvement of faster convergence and accuracy of the 

solutions. The results show that the MCM has faster speed of 

convergence than common Gauss-Seidel method and DCM, in 

other words it leads to reducing the solution time. This 

outstanding aspect is illustrated for those of equation with 

combinational response.  
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