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Abstract—Using models based on delay differential equation 

(DDE) and finite difference traveling wave (FDTW), we have 

obtained the characteristics of passively quantum dot mode-

locked lasers (QD-MLLs). By manipulating DDE, it is shown that 

by an increase in the saturable absorber’s (SA) reverse bias, the 

pulse width decreases while the stability of the pulse time domain 

response decreases. Besides, the range of enhancement factor to 

have a stable pulse decreases as well. Moreover, DDE model 

shows that by controlling unsaturated gain and loss ratio 

harmonic mode locking is achievable. Finally, FDTW model is 

used to investigate the spatio-temporal features of QD-MLLs. 

Although this method substantially increases the simulation 

complexity due to the complex rate equations alongside with two 

dimensional simulation grid, it provides a more comprehensive 

simulation tool for analysing the device. 

Keywords-component; Delay differential equation model (DDE); 

Finite difference travelling wave model (FDTW); saturable 

absorber (SA); quantum dot mode-locked laser. 

I.  INTRODUCTION 

Recently, due to the superior performances, quantum dot 
mode-locked lasers (QD-MLLs) have been considered as 
alternatives to quantum well mode-locked lasers (QW-MLLs).  
The important goal of the mode locking in semiconductor 
lasers is to generate stable short pulses. Distinctive properties 
of self-assembled QD (SA-QD) active regions, such as low 
values of linewidth enhancement factors (Henry’s factor), 
unsaturated gain and absorption make QDLs considerably 
efficient compared to its counterparts such as bulk and 
quantum well lasers [1-4].  

Different modelling techniques such as finite difference 
travelling wave (FDTW) model and delay differential equation 
(DDE) model have been developed to analyze semiconductor 
mode-locked lasers and especially QDMLLs [5, 6]. FDTW 
model consider spatial distribution of carriers and electric field 
amplitude without assuming unidirectional lasing in a ring 
cavity (as assumed in DDE model). It also computationally 
expensive and needs enormous computation to simulate laser 
behavior.  On the other hand, using delay differential equation 
(DDE) method to model passive mode-locked laser in various 
operating conditions is a powerful tool to simulate laser 
performance [6-9]. Besides, DDE model can guide us to design 
the laser and anticipate clearly its operation. DDE model uses 9 

parameters in modelling of the device that can be extracted 
from measurable quantities. So, DDE based simulations are 
very time efficient and need lower computation than FDTW 
model. In this paper we will follow the two FDTW and DDE 
approach to simulate laser behavior. But as we will observe, 
DDE model needs less computation and is simpler than FDTW 
model.    

II. USING DELAY DIFFERENTIAL EQUATION (DDE) MODEL 

TO SIMULATE QDMLL 

The device simulated by using DDE model with a 1mm 
absorber section and 7mm gain section, is similar structure 
proposed in [8, 9] with 8 stacks dots in well structure which 
can be grown by molecular beam epitaxy (MBE).  

DDE model firstly was introduced by Vladimirov and 
Turaev [6, 7] which was derived from coupled partial 
differential equations (PDE) based on FDTW model which 
describe the optical wave and carrier densities in the cavity 
including gain and absorber sections [5, 8, 9]:  
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In the above mentioned equations, E(t, z) describes complex 

optical field in the cavity. Subscript r=q (or r= g) relates to 

absorber (gain) section. The parameters rg , r , r , and 

r are differential gains, transverse modal fill factor, linewidth 

enhancement factor, and carrier density relaxation rates in the 

corresponding gain and absorber sections, respectively. The 

parameter rJ indicates the injected current density in the 

corresponding absorption and gain sections. v  is constant 

light group velocity, in both gain and absorber sections. Using 

the transformation described in [6, 7, 9], the two dimensional 

(spatio-temporal) equations in FDTW model can be converted 

to a one dimensional (temporal) system of DDE equations [6-

9]: 
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where, the delay parameter, T, is normalized roundtrip time. A, 

G, and Q are optical field, saturable gain, and saturable loss, 

respectively. q and g are linewidth enhancement factors in 

the absorber and gain sections, respectively. Linear cavity loss 

is depicted by κ. The carrier relaxation ratio or  is the ratio of 

the absorption relaxation time to gain relaxation time, 

abs gain   . Saturation parameter s, can be defined as the 

ratio of differential absorption to differential gain. 0q and 

0g represent the unsaturated absorption and gain, respectively 

[8, 9]. In order to have fundamental mode-locking we follow 

the stability analysis of [6] and use its stability criteria. The 

resultant criterion to have stable mode locking is: q0=mg0 

which m corresponds to the slope of a line in the 0 0q g  

plane and clearly should be chosen correctly to ensure 

fundamental mode locking.  

 

A. Results 

The device parameters are extracted by segmented contact 
method (SCM) at 20°C and three different bias conditions for 
saturable absorber (SA) which are listed in Table. I [8, 9]. The 
pre-mentioned DDE equations which define the model 
(equations (3), (4), (5)) are solved over two thousand round trip 
times to settle transient condition. Fig. 1(a) and 1(b) shows 
time domain simulation of the pulse intensity for 3V SA 
reverse bias condition. It is worth noting that by increasing the 
bias voltage, the pulse time domain response will be more 
unstable, though it may decrease pulse width.  

A parameter that can play crucial role in the device 
performance is the ratio of unsaturated gain and loss 
parameters (or m). One can achieve higher pulse repetition rate 
by engineering this parameter (m) [8, 9]. For instance, it can be 
shown that by gradually increasing m, one can achieve 
harmonic mode locking. As Fig. 2 (a) and (b) shows, onset of 
pulse can be predicted for m=0.5. The values used in 
simulation are listed in Table I (for 3V reverse biased 
condition).  As the ratio of unsaturated gain to loss (m) 
increases the intensity of the pulse increases and the laser 
continues to work in fundamental mode locking state.  
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Figure 1(a) Transient and steady state response of QDMLL for -3V absorber 

bias and for 1.8,g q  . (b) The zoomed pulse shape  

Slightly after 0 0 7 8m g q   the laser starts entering to 

second harmonic mode locking (as depicted in Fig. 2(b)) 

regime which two pulses are in the cavity per roundtrip.  Fig. 

3 (a) and (b) depicts results of mode locking behavior by 

increasing m values for 5V reverse biased condition for SA. 

Fig. 3(a) shows details of time domain behavior of mode 

locking for −5V bias. The simulation parameters seed the 

simulation are listed in the first column of Table I.  The onset 

of pulse can be predicted for m=1/8. In this condition the laser 

operates in fundamental mode locking regime. By increasing 

the m to 5/8, second harmonic mode locking starts emerging 

and repetition rate doubles as well (Fig. 3(b)). It is important 

to note that by increasing m value further (to m<1), the onset 

of third harmonic mode locking arises. These results 

correspond to those achieved in [8, 9].   

 
Table. I: Parameters used in the device simulation 

over different bias condition and at 20°C [8, 9]. 

Parameters -5 V -3 V 

T 6.67 5 

G(0) 4.18 4.18 

Q(0) 4.55 3.20 

αg 0.5 0.2 

αg 0.5 0.2 

κ 0.55 0.55 

γ 41.10 39.15 

Γ 0.08 0.08 

s 6.90 4.65 
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Figure 2(a) Pulse intensity for different unsaturated gain to absorption ratio 
(m) for -3V bias condition. (b) The corresponding zoomed pulse shapes.  
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Figure 3(a) Pulse intensity for different unsaturated gain to absorption ratio 

(m) for -5V bias condition. (b) The corresponding zoomed pulse shapes.  
 

 

II. USING FINITE DIFFERENCE TRAVELLING WAVE (FDTW) 

MODEL TO SIMULATE QDMLL 

The device simulated in this paper by using FDTW model 
is 1mm laser cavity including 0.1mm absorption and 0.9mm 
gain sections, similar to the structure proposed in [10, 11]. Two 
dimensional numerical grid (temporal and spatial grid) is used 
to model spatio-temporal evolution of the counter propagating 
fields in the two section laser cavity [10, 11]. The coupled 
formalism and two dimensional grid means that to increase the 
resolution of the results, we should increase the steps (number 
of grids) which can increase our computation and simulation 
time as well. Furthermore, some terms in the rate equations are 
itself described by other equations which indicates that one 
faces vastness of parameters to use FDTW model for 
simulation two section laser [9]. As a result, compared with 
DDE model, FDTW method is complex and needs great 
numerical calculation. Besides, FDTW model takes all details 
of the equations into account and is more accurate than DDE 
model. A simplified flowchart of FDTW simulation is depicted 
in Fig. 4. The parameters used in simulation are given in Table 
II.  

The governing travelling wave equations of two counter 
propagating optical field in the two section cavity is [10, 11]: 
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with boundary condition at two facets (z= 0, L): 
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Here, c is light speed in vacuum, ng is group refractive index, 

spF
 describes spontaneous emission noise, r0,L stands for laser 

facets reflectivity. Assuming that the propagation factor (β) 

depends only on ngs (ground state occupation probability), it 

can be formulated as [10, 11]: 
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wherein αH, g’, α, and δ represent linewidth enhancement 

factor, differential gain/absorption, internal loss, and detuning 

from reference wavelength. It is worth noting that the 

frequency dependence of gain profile is neglected in this 

work. So, material dispersion operator in our simulation is 

assumed to be zero. Carrier rate equations between different 

states (ground state (GS), excited state (ES), and carrier 

reservoir (CR) of quantum dots) for two absorber and gain 

sections are described in [l0].  

 

 

Carrier rate equations in the gain section can be described as 

[10, 11]: 

,

, ,

,

( , )
( , ) 2

( , )

( , )
4 (9)

gs gs
st gs es gs

gs

es es
es gs cr es

es

cr cr
cr es

I cr

dn n z n
R n E R

dt

dn n z n
R R

dt

dn n z nI
R

dt e





 

   

   

  

 

which ,es gsn and crn are occupation probabilities of 

corresponding states. ,cr esR and ,es gsR  are carrier 

recombination rates which are fully described in [10] as 

follows: 
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Here, I and Rst are respectively scaling factor and stimulated 

emission rate which are fully described in [10].  
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Figure 4. Flowchart of FDTW simulation steps. 

 
Table II: Parameters used in FDTW model [10, 11]  

Symbol Quantity Value 

0  Central wavelength 1.3m 

gn  Group refractive index 3.75 

L  Total length 1mm 

SAl  SA length 100m 

  Static detuning 0cm-1 
 

  Internal absorption 5cm-1 

H  Henry factor 2 

g   Differential gain/absorption 40/200cm-1 

gs  GS relaxation rate 1ns 

es  ES relaxation rate 1ns 

cr  CR relaxation rate 1ns 

es gs 
 ES to GS Transition time 2ps 

gs es   GS to ES Transition time 5ps 

1

cr es 

  
CR to ES Transition rate (SA) 0 

cr es   
CR to ES Transition rate (G) 5ps 

es cr   
ES to CR Transition rate (SA) 218 ps

SAV

e   

es cr   
ES to CR Transition rate (G) 80ps 

   Transversal confinement factor 0.075 

0r  Left facet reflectivity 0.95   

Lr  Right facet reflectivity 0.3  
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Carrier rate equations in the saturable absorber (SA) section 

( 0 SAz l  ) can be described as [10, 11]: 
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B. Simulation Results 

Fig. 5(a) and 5(b) show numerical simulation of pulse intensity 
using FDTW model for different injection currents. At low 
injection currents (above laser threshold for I=35 mA) the laser 
operates in Q-switching regime, as shown in Fig. 5(b). 
Furthermore, by increasing the injection currents, to I=45, 65, 
80, 100, and 120 mA, as Fig. 5(a) shows, laser enters 
fundamental mode-locking regime and generates stable pulse 
shapes. The peak power of the emitted pulse for different 
currents is almost constant. By increasing injection current, the 
pulse shapes experience some type of asymmetry. The more 
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Figure 5 (a) Pulse intensity for different injection currents including I=45, 65, 

80, 100, and 120mA. (b) Pulse intensity for I=35mA 
 

the injected current (to the gain section) is, the less symmetric 
the pulse is. It is also important to note that the pulse width 
increases and experiences a broad trailing edge plateau (TEP) 
as the injected current increases [10, 11]. Finally for larger 
injection currents, the laser switches to continuous wave mode 
regime. 

One of the major and important parameters that can affect 
the pulse shape of mode-locked laser, is the reverse voltage 
bias of saturable absorber (SA). We assume that all the 

transition rates are independent of voltage (VSA) except es gs  . 

It is assumed that es cr   has exponential dependence on SA 

absorber reverse bias (VSA). Fig. 6(a) and 6(b) show the effects 
of SA reverse bias voltage on the pulse shape for two different 
injected currents. As shown, the pulse width (FWHM) 
increases as the SA bias increases. For instance, for I=65 mA, 
the pulse width for VSA= −5 V is narrower than the pulse width 
for VSA=−1 V. Besides, the pulse intensity for VSA=−1 V is less 
than the pulse intensity for VSA= −5 V. This trend also can be 
observed in Fig. 6(b). For I=100 mA, the pulse intensity for 
VSA= −5 V is the highest. On the other hand the pulse width for 
VSA= −2 V is the broadest. By increasing the SA reverse bias, 
the transition time from ES to CR decrease and by accelerating 
the carrier transition from ES to CR, the occupation probability 
of GS decreases. So this phenomenon causes the SA to saturate 
in a narrow time interval which makes the pulse width narrow. 
On the other hand, by increasing SA reverse bias, the 
absorption of the SA increases and this effect allows the modes 
with same phase to contribute the pulse intensity and filters the 
modes which are out of phase. 

In conclusion, DDE model is a very efficient model that 
can predict the QD-MLL behavior with limited parameters 
which can be achieved by segmented contact method (SCM). 
Using this model, we can easily simulate steady state and 
transient behavior of the device under different conditions. As 
can be seen, the accuracy of the results is acceptable. It is 
shown that by decreasing the absorber reverse voltage, the 
acceptable range of enhancement factor to have a stable pulse 
increases. 

 
(a) 



6 

 

 
(b) 

Figure 6(a). Pulse intensity for two different bias condition of SA, but for a 

same injection current (I=65mA). (b) Pulse intensity for three different bias 

condition of SA, but for a same injection current (I=100mA)  
 

Moreover, by engineering m parameter one can achieve higher 
repetition rate in the cavity for different gain currents. It is 
worth mentioning that by further increasing the m parameter, 
the pulse shape may experience some instabilities and chaotic 
behavior. On the other hand, we show that two dimensional 
numerical grid (time and space grid) which used to solve the 
FDTW model makes the model more complex. Also, the terms 
describing the laser’s rate equations are complex and two 
dimensional (spatio-temporal) grid increases numerical 
computation and simulation time. As a result, compared with 
DDE model FDTW method needs great numerical 
computation, though FDTW model takes all details into 
account and is more accurate than DDE model. It is shown that 
by increasing the current and decreasing SA reverse voltage, 
pulse width increases.   
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