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Abstract— Detection of the most interesting region in an image 

has become an important subject in computer vision. Bottom-up 

model detects regions that differ with respect to their 

surrounding ones. These regions are known as salient regions. In 

this paper, we propose a new bottom-up model for saliency 

detection using the color of background regions. In the model, 

first, the image is segmented into superpixels. The boundary 

superpixels of the image are considered as background and 

others as uncertain superpixels. Then, the saliency is determined 

based on color difference between each uncertain superpixel and 

all background superpixels in the CIE LAB space. The proposed 

method can highlight the whole object regions uniformly and 

suppress the background regions effectively. Experimental 

results on the MSRA-     dataset demonstrate our method 

performs well against the state-of-the-art methods in terms of 

speed and accuracy. 

Keywords- Boundary superpixels, bottom-up visual attention; 

background color feature; saliency detection. 

I.  INTRODUCTION 

Human visual system is able to quickly identify most 
interest regions in a scene. The first area of an image which 
attracts the attention, the most salient region is called. How to 
identify this region has become essential for machine vision 
tasks, and it has many applications, such as image 
segmentation [1], object recognition [2], image retrieval [3] 
and image compression [4]. Therefore, different models have 
been proposed for saliency detection over the past few years. 

Existing models can be classified as either bottom-up [5]–
[17] or top-down [18], [19]. Bottom-up methods estimate 
saliency using low-level image features (e.g. color, orientation 
and luminance). Usually, a different region respect to its 
neighbors in an image will attract more attention. On the 
contrary, top-down approaches employ high-level features (e.g. 
face). The methods often require the prior knowledge of the 
stimuli and the learning process. 

Many researchers utilize the bottom-up methods for 
saliency detection. Itti [5] proposed a biologically inspired 
model based on color, intensity and orientation information. 
This model only introduces local features and not considers 
the object scale. Ma and Zhang [6] estimate the saliency value 

   

   

   

Figure 1.  Original images; their saliency maps using the proposed method; 

and ground truth 

using a fuzzy growing method. The method only highlights the 
object boundary regardless of its inside. Achanta [7] used 
center-surround feature distances to extract the salient regions. 
Some methods [8], [10] estimated saliency in the frequency 
domain that often they are not appropriate for natural images 
with high color complexity. Also methods such as İmamoğlu 
[13] extracted low-level features by wavelet transform domain. 
Some approaches [11], [16] applied the instance of biological 
evidence that shows objects near the image center are more 
attractive to human. The approaches often cannot identify the 
salient objects away from the image center. 

Most mentioned methods do not detect salient regions 
correctly and more highlight high-contrast edges. Furthermore, 
the methods often estimate saliency using the center-surround 
contrast. Here, we propose a bottom-up saliency detection 
model based on the color of the background regions (See Fig. 
1). In the model, a given image is segmented into superpixels. 
For each superpixel, its color mean is computed in the CIE 
LAB space. The boundary superpixels of the image are 
considered as background and the others as uncertain 
superpixels. The color distance between each uncertain 
superpixel with entire the background superpixels is computed, 
and its minimum distance is obtained. The saliency value of 
each uncertain superpixel is defined according to its minimum 
distance, and salient regions are detected.  



The remainder of this paper is organized as follows. Section 
II describes our method for saliency detection. Section III 
reports the experimental results and Section IV concludes the 
paper. 

II. PROPOSED METHOD 

We propose a saliency detection model that its flowchart is 
illustrated in Fig. 2. In the proposed method, a given image is 
segmented into N (here, N = 200) superpixels using the Simple 
Linear Iterative Clustering (SLIC) algorithm [20]. A superpixel 
contains similar pixels and preserves the structural information 
of a salient object. The superpixels in the four sides of the 
image (image boundary) are considered as background. They 
are referred as “background superpixels” and others as 
“uncertain superpixels.” 

The given image converts from RGB space to CIE LAB. 
The CIE LAB color space is similar to human visual 
perception, and preserves luminance as well as color 
information simultaneously. Due to its high uniformity with 
human color perception, the CIE LAB space is a good choice 
to determine the color difference. For each superpixel, its color 
mean is computed in the CIE LAB space. Then, the distance of 
each uncertain superpixel with the background superpixel is 
calculated as follows:  

     (   )  ‖     ‖ 

Where ci and cj are the color means of the pixels within 
uncertain superpixel i and the background superpixel j 
respectively, ||.|| is the Euclidean distance. For each uncertain 
superpixel (i), its minimum distance with entire background 
superpixels is computed as follows: 

  ( )          (   )                    

Where,     (   ) is the color distance computed in (1), and L is 
the number of background superpixels. If the color distance 
between an uncertain superpixel with entire the background 
superpixels is the high, it means that this superpixel is not 
similar to any the background superpixel, and it is considered 
as a salient region. Using of an adaptive threshold, the mean of 
minimum distances (M) in (2) is determined as a threshold (T). 

          ( ( ))                (3) 

Where K is the number of the uncertain superpixels. The mean 
of each uncertain superpixel that is bigger than the threshold, is 
determined as the salient region, and saliency map is created 
based on it. 

  ( )  {
 ( )         ( )   

               ( )   
                       (4) 

Where T is the adaptive threshold, M is minimum distances 
matrix, K is the number of uncertain superpixels, and S

*
 is a 

saliency map. High value of M indicates more salient of the 
superpixel. For the background superpixels, saliency values are  

 

Figure 2.  The flowchart of the proposed method 

zero. In last, we convolve the saliency map (   )  with a 
Gaussian filter (      ) for smoothing and noise removal.  

             

An example of generation process of the saliency map is 
shown in Fig. 3. 

III. EXPERIMENTAL RESULTS 

A.  Dataset 

 We compare our method with nine the state-of-the-art 
saliency detection methods on MSRA-1000 dataset [21] 
comprising 1000 images with binary ground truth.  

B. Evaluation Metric 

Given a saliency map with values in the range [0, 1], its 
binary saliency map is created with a fixed threshold T∈ [0, 1]. 
To generate a precision-recall curve, by varying T from 0 to 1, 
several binary saliency maps are determined, and different 
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Figure 3.  Example of generation process of saliency map, (a) input image, (b) the image is segmented into superpixels, (c) the type of the superpixels 

(background (green) or uncertain (red)) are determined, (d) for each uncertain superpixel, minimum distance is computed, (e) threshold (T) is obtained using the 

mean of the minimum distances, (f) saliency value is calculated for each uncertain superpixel using threshold and (g) saliency map is created (Obviously, saliency 
value is zero for the background superpixels). 

precision-recall pairs are created. The average precision-recall 
curve is generated by averaging the results from all the images. 
Furthermore, we use adaptive threshold to generate a binary 
saliency map for each image. Adaptive threshold is two times 
the mean saliency from the binary saliency map. By averaging 
on entire the images, F-measure is computed as follows: 

           
(    )                 

                     
 

Where precision is the ratio of salient pixels that are detected 
correctly to all the pixels of extracted regions in the saliency 
map, recall is the ratio of salient pixels that are detected 
correctly to the ground-truth, and Similar to [8, 11], β

2 
= 0.3 in 

our experiments. Average F-measure is achieved by averaging 
the results from all images. 

C. Comparisons 

We compare our method with other nine state-of-the-art 
methods included CS [12], SDSP [11], WV [13], FT [8], AC 
[7], SR [10], GB [9], MZ [6] and IT [5] on MSRA-1000 
dataset. Fig. 5 shows a visual comparison from the saliency 
maps of the methods. As seen in Fig. 5, our method creates 
saliency maps close to the ground truth.  

In our experimental, we evaluate the methods with 
precision-recall curve and F-measure. Precision-recall curves 
and also, precision, recall and F-measure using an adaptive 
threshold for the state-of-the-art methods on MSRA-1000 
dataset are illustrated in Fig. 4. Furthermore, average F-
measure for each saliency detection method is listed in Table I. 
We note that the proposed method generates more 
discriminative saliency maps with higher precision and recall 
than the other nine methods. 

  

Figure 4.  Left: precision-recall curves of different methods. Right: precision, recall and F-measure using an adaptive threshold. All results are computed on 

the MSRA-1000 dataset for comparison our method (ours) with methods included CS [12], SDSP [11], WV [13], FT [8], AC [7], SR [10], GB [9], MZ [6] , IT 
[5]. 
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TABLE I.  F-MEASURE FOR EACH METHOD 

Method F-Measure 

ours  .     

CS [12] 0.6564 

SDSP [11] 0.8080 

WV [13] 0.3188 

FT [8] 0.7072 

AC [7] 0.5444 

SR [10] 0.3954 

GB [9] 0.5569 

MZ [6] 0.4561 

IT [5] 0.4426 
 

TABLE II.  COMPARISON OF AVERAGE RUN TIME 

Method Time (s) Code 

ours  .    Matlab 

CS [12] 21.223 Matlab 

SDSP [11] 0.087 Matlab 

WV [13] 6.777 Matlab 

FT [8] 0.024 C++ 

AC [7] 0.127 C++ 

SR [10] 0.061 Matlab 

GB [9] 1.563 Matlab 

MZ [6] 0.07 C++ 

IT [5] 0.411 Matlab 
 

 

D. Run Time 

We evaluate the execution time of our method with other 
methods. Experiments are performed using Intel Core i5 2.53 
GHz processor and 4 GB memory. The average run times of 
the methods on the MSRA-1000 dataset are presented in Table 
II. Our run time is much faster than methods CS [12], WV [13] 
and GB [9]. 

IV. CONCLUSION 

In this paper, we proposed a bottom-up method that uses 
the background superpixels color for detecting salient regions. 
The boundary superpixels of the image were considered as 

background. The saliency of the other superpixels was 
determined based on color difference between each uncertain 
superpixel and all the background superpixels. The proposed 
method suppresses the background superpixels effectively, and 
can successfully detect the whole object superpixels uniformly, 
even when the object is not near the image center. 

We have compared the results of our method with the state-
of-the-art methods on the MSRA-1000 public dataset. The 
results indicate our method can achieve the best saliency 
detection accuracy against the other methods while it has a 
quite low computational complexity. Therefore, the method 
can be used for real-time applications. 
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Figure 5.  Visual comparison of saliency maps. Our method (ours) generates saliency maps close to the ground truth compared to the state-of-the-art methods. 
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