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Abstract: The functional hemodynamic response is mainly 

affected by physiological interference which occurs in superficial 

layers of brain tissue. This makes the hemodynamic response 

estimation a challenging task. Recent studies have mostly tried to 

use the information content of the near and far source detectors 

of fNIRS systems to remove the systemic interference. In this 

study, we develop a constrained adaptive estimation procedure 

using wavelet transform decomposition to determine the share of 

physiological interference in brain hemodynamic response. In 

our proposed method, we decompose the near channel signal by 

wavelet transform into several components and then estimate the 

proper weights for each component adaptively by RLS, LMS and 

Kalman filter. The performance of the proposed algorithm is 

quantified by MSE and Pearson’s correlation coefficient (R2) 

criteria. We also compare our algorithm with previous methods 

which have used adaptive filtering based on Empirical Model 

Decomposition (EMD) and Ensembled-EMD. Our method turned 

out to outperform past works concerned with estimating Evoked 
Hemodynamic Response signals. 

Keywords: Evoked Hemodynamic Response, functional Near 
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I. INTRODUCTION 

Neurological activation results in releasing of vasoactive 
mediators leading to dilation of the surrounding arterioles and 
capillaries [1]. This dilation changes the regional blood flow 
and is closely related to the neural activity changes which can 
be detected as a positive blood oxygenation level-dependent 
(BOLD) in functional MRI (fMRI) signal. This is due to the 
fact that neural activity increases the oxygen consumption of 
the blood flow within a specific area of brain where is mostly 
responsible for that activity. An fMRI system is expensive and 
bulky machinery that makes it impossible to be used during 
normal every day activities. Furthermore, fMRI has poor 
temporal resolution and its recordings are affected badly by 
head movements. Therefore, it is crucial to develop a real-time 
portable low cost modality to monitor the brain activity. The 
modality that has all these characteristics is the functional near-
infrared spectroscopy (fNIRS) [2]. fNIRS is a neuroimaging 
technique that has been used over past 20 years for noninvasive 

monitoring of the brain hemodynamic changes. The main 
underlying principle of fNIRS is measuring the hemodynamic 
response during a mental activity by monitoring the intensity 
changes of the received light passing through the brain tissue. 
The light photons within infrared range (650-950 nm) are 
mainly either absorbed or scattered by oxy-Hb and deoxy-Hb 
blood chromophores. The changes in the concentration of these 
chromophores can be calculated by modified Beer Lambert 
Law (MBLL) [3]. Hence, fNIRS non-invasively monitors the 
hemodynamic changes during a neural activity within 
corresponding brain regions [2]. Despite aforementioned 
advantages, the hemodynamic response of mental activities is 
contaminated with physiological hemodynamic inferences 
arising from heart rate, breathing, and other homeostatic 
processes. These interferences are called systemic or global 
interference that occur both in superficial layer of brain and in 
brain tissue itself.  Several methods have been developed to 
remove these interferences. The most widely used method is 
low pass or band pass filtering [4]. Unluckily, since the 
frequency content of hemodynamic response overlaps the 
systemic interference, these methods are partially ineffective. 
The other common method is Block Averaging (BA) which 
requires more than 50 trials of fNIRS recordings to estimate 
EHR satisfactorily [5]. In [4] the subtraction of brain active 
region of interest (ROI) from the non-activated region is 
proposed. More practical version of this method is the use of a 
dual channel fNIRS system [6-8]. In [6] Saager et al. take the 
short distance source detector (<1cm) as systemic interference 
and cancel it from far distance source detector by linear 
minimum mean square (LMMSE). Other studies [7-9] have 
used adaptive filters to reduce physiological interferences. In 
[8] Zhang et. al considered empirical mode decomposition 
(EMD) to decompose the near channel into its intrinsic mode 
functions (IMFs). Then, proper weights for each IMF are 
determined by a kind of adaptive filter to estimate the weight of 
the physiological interference in far channel signal. Mode 
mixing problem is identified as a main drawback of EMD [10]. 
In an effort to relieve this drawback, Ensembled EMD is 
developed in [11]. In [9] an adaptive algorithm based on 
EEMD technique is applied on dual channel fNIRS system in 
order to improve the estimation of physiological interference. 



Similarly, in [12], Gagnon et al. used an algorithm based on 
Kalman filter to estimate the EHR. Many previous studies have 
defined a protocol for collecting data. This protocol can be 
applied on an adaptive filter as a constraint to avoid unsuitable 
weights for regressors. In addition, wavelet transform 
decomposes a signal into orthogonal components which is by 
itself a suitable property of signals when fed into an adaptive 
filter. Hence, in this study, we propose two main ideas to 
improve EHR estimation: 1) decomposing near channel signal 
into its constituents by wavelet transform, 2) applying a 
protocol constraint to the adaptive filter. To compare the 
effectiveness of our proposed algorithm with other discussed 
methods, mean square error (MSE) and Pearson’s correlation 
(R2) were calculated as quantitative criteria. The details of our 
algorithm are described in section 2. The results of our 
proposed method for the data we have collected over 8 healthy 
subjects are presented in Section 3. Finally, Section 4 discusses 
the results and concludes the paper. 

II. MATERIALS & METHODS 

A schematic of the configuration of a dual channel fNIRS 
probe along with the block diagram of our proposed method is 
shown in Figure 1. As seen, the light source (S) transmits light 
photons and two detectors (D1 and D2) collect those photons 
which travel the banana-shaped pathways through the brain 
tissue.   

  

Figure 1. Schematic of the configuration of a dual channel fNIRS probe and 
its output to the block diagram of our proposed method. 

Since every source-detector pair forms a channel, there are 
two channels here: near and far. Previous studies have stated 
that the penetration depth of light photons is about half of S-D1 
distance [13]. Therefore, the near channel contains information 
of hemodynamic changes of skin and scalp that comprises 
heart rate, breathing, Mayer, and low oscillation frequencies 
(also called Ynear). The far channel has functional 
hemodynamic changes with a pinch of near channel 
information that contaminate hemodynamic response of mental 
activities arising from cortex (Yfar). This can be stated 
mathematically as 

𝑌𝑓𝑎𝑟 = 𝑊 ∗ 𝑌𝑛𝑒𝑎𝑟 + 𝐸𝐻𝑅 + 𝑁,  

where 𝑁  is the noise of measurement and 𝑊  is the weight 
vector to be adjusted by the constrained adaptive filter. 

By a minor rearrangement we have 

𝐸𝐻𝑅 = 𝑌𝑓𝑎𝑟 − 𝑊 ∗ 𝑌𝑛𝑒𝑎𝑟 − 𝑁,  

which emphasizes the fact that 𝐸𝐻𝑅 is derived by subtracting 
the estimated physiological interference from the far channel 
measurements.  

a. Preprocessing  

In this step, the intensity of far and near channel signals are 

converted to HbR and HbO2 concentration by using Modified 

Beer-Lambert Law. Then the motion artifact is removed by the 
Scholmann’s algorithm [14], and the signal trend is canceled 

by means of wavelet transform [15]. Finally both signals are 

normalized whose concentration is shown in Figure 2. 
 

Figure 2. Pre-processed signals of HbR and HbO2 concentration. 

b. Wavelet transform decomposition 

As mentioned before, the near channel contains 
physiological information that can be decomposed into its 

components by signal processing techniques such as EMD [8], 

EEMD [9] and wavelet transform [15]. In this study, 

Daubechies wavelet (N=4) is employed to decompose the 

HbO2 concentration of near channel. The influence weights of 

the decomposed components are estimated by the constrained 

adaptive filter of the block diagram in Figure 1. This block is 

shown in more details in Figure 3. 

 

Figure 3. The dashed part of Figure 1 in more details 

As seen, the near channel signal is decomposed by the 
wavelet transform block whose output makes up signals x1 to 
xi. These signals as well as the far channel signal sum up to 
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make the input of the estimation block. RLS, LMS, and 
Kalman Filter algorithms are used as the estimation block in 
this study. This block is supposed to tune the summing weights 
for signals x1 to xi. 

c. Constrained LMS, RLS and Kalman filter 

Acquisition of fNIRS data is always carried out based on a 
predefined protocol that consists of several tasks and rest 
intervals. The estimation of functional hemodynamic response 
in task intervals has been the aim of many previous studies. In 
these studies the influence of rest and task intervals are 
considered the same. The rest intervals have no functional 
activity; therefore, the signals of the near and far channels only 
contain physiological interference. On the other hand, the 
mutual information between near and far channels become 
more dissimilar in task intervals which is caused by the 
occurrence of a mental activity. This dissimilarity, if 
quantified, can be used as a parameter to update the weights of 
the defined filters. This procedure can be enumerated as 
follows: 1) In the rest intervals, after hemodynamic signal is 
damped within 8-10 seconds, an extra coefficient whose 
maximum value is unity is included in the aforementioned 
filters. In case there is a task interval preceding the rest, this 
coefficient is increased exponentially. 2) In the task intervals, 
the functional signal ascends and then descends exponentially 
by the outset of the rest interval. This causes the extra 
coefficient to be descending then ascending which is opposed 
to the functional signal. In other words, this coefficient tries to 
reduce the difference between near and far channels, which is 
called error, in the rest interval and allow larger difference in 
the interval where there is some mental activity. The trend of 
the protocol coefficient described just before is depicted in 
Figure 4. 

  

Figure 4. The trend of protocol coefficient value 

In rest intervals, the weight updating strategy of the constrained 
RLS (CRLS), constrained LMS (CLMS), and constrained 
Kalman (CKalman) filter are adopted from  [9, 16] and can be 
mathematically formalized as 

𝑤(𝑛 + 1) = 𝑤(𝑛) + 2𝜇(n)e(n)x(n),  
𝑤(𝑛) = 𝑤(𝑛 − 1) − 𝑒(𝑛)𝑄(𝑛)𝑥(𝑘), 
𝑤(𝑛|𝑁𝑡) = 𝑤(𝑛|𝑛) + 𝑝(𝑛|𝑛)𝑝(𝑛 + 1|𝑛)−1𝑤(𝑛 + 1|𝑁𝑡) − 𝑤(𝑛 + 1|𝑛),  
𝑒(𝑛) = 𝑦𝐻𝑏𝑂2𝑓𝑎𝑟 − 𝑤(𝑛)𝑥(𝑛). 

 

However, in the task intervals, the weight updating strategies 
CRLS, CLMS and CKalman filter should be modified as  

𝑤(𝑛 + 1) = 𝑤(𝑛) + 2𝛼(𝑛)𝜇(𝑛)𝑒(𝑛)𝑥(𝑛),  
𝑤(𝑛) = 𝑤(𝑛 − 1) − 𝑒(𝑛)𝛼(𝑛)𝑄(𝑛)𝑥(𝑘),  
𝑤(𝑛|𝑁𝑡) = 𝑤(𝑛|𝑛) + 𝑝(𝑛|𝑛)𝑝(𝑛 + 1|𝑛)−1𝛼(𝑛)𝑤(𝑛 + 1|𝑁𝑡) − 𝑤(𝑛 + 1|𝑛). 

where α is the protocol coefficient.  

 

d. Subjects and data acquisition 

In this work 12 healthy subjects (age mean ± standard 
deviation: 26±8 years) were chosen for data acquisition. Each 
subject completed a questionnaire to provide demographic 
information, drug use history, and physical status. An fNIRS 
system with dual channel probe that is developed and evaluated 
by our team in University of Tehran [9, 17] was placed on the 
participants’ prefrontal cortex and affixed by a band. During 
data acquisition procedure, the participants were asked to sit 
back relaxed in a dark silent room and have a 4-minute rest. 
Finally, the data acquired from 8 out of 12 subjects was labeled 
as valid and used for this paper. These subjects confirmed that 
they had been relaxed during the experiment and their mind 
had not been occupied by daily stress. 

III. RESULTS 

a. Synthetic EHR data generation 

To evaluate and compare the performance of our proposed 
method with existing algorithms, simulated hemodynamic 
response function was generated by means of the gamma 
function ℎ(𝑡) = 𝑡^𝑏 exp (−t/d) [8] with d=0.56 and value of b 
within [0.5,1.3]. The EHR inter stimulus intervals (the intervals 
with zero concentration value in Figure 5 between each two 
EHRs) were taken from a uniform distribution over [8,20] 
seconds. An example of a train of simulated EHRs is shown in 
Figure 5.  

 

Figure 5. An example of stimulated EHR 

b. Set up the dataset and Comparing the methods 

In this step, the train EHR signal generated in the previous 
section is added to the pre-processed signal of HbO2 

concentration from far channel (Section II.a) in order to obtain 

a signal for far channel which we call semi-simulated (because 

this signal has both synthetic and real-world shares) signal for 

each subject (Yfar-sim).  Then about 70% of Ynear and Yfar-sim is 

set apart for training and the rest is dedicated to test our 

algorithms. In next step, both train and test portion of Ynear 

decomposed into their components by wavelet transform, EMD 

and EEMD. We set the number of wavelet decomposition 

levels to 4, for we assume 4 sources of interferences as 

explained in Section. II . The number of decomposition levels 

for EMD and EEMD is set by their intrinsic criterion to 9. 
Then only the decomposed train data of Ynear and Yfar-sim are 

used for updating the weights of CLMS, CKalman and CRLS 

filters. Then the calculated weights by each algorithm are 

applied on test data and the estimated EHR is measured. To 

smoothen the result, we use Savitzky-Golay filter [18]. The 

estimated EHR by each of these algorithms is calculated and 

averaged over the specific intervals of the trial. These specific 
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intervals are chosen in a way so that each one encloses one 

EHR period as depicted in Figure 6. 

To make the evaluation and comparison of our proposed 

method with previous works more concrete, both MSE and R2 

measures between simulated and estimated EHR over all 

subjects are shown as two bar graphs in Figure 7.a and Figure 
7.b the MSE and correlation between the mentioned adaptive 

filters with protocol constraint and without it are compared 

respectively.  These bars represent the mean and the error bars 

symbolize the standard deviation.  

IV. DISSCUSION & CONCLUSION  

fNIRS can be effectively employed to provide useful 

information for the study of cerebral activity. Unfortunately, 

the hemodynamic response of cerebral activity is highly 

degraded by physiological interference. The estimation of EHR 

from fNIRS signals is a challenging problem due to its small 

amplitude with respect to physiological components. 

 

 

 
Figure 6. The block averaging of estimated EHRs by the mentioned 

algorithms  

 In the present study, an effective method to improve the 

recovery of EHR from fNIRS signals is presented. In summary, 
we distinct EHR from physiological interference by means of 

dual channel fNIRS. First the preprocessed signal of the near 

channel is decomposed by Wavelet Transform (WT); then, the 

weight of each component with distinct frequency content is 

adjusted by constrained adaptive filters to extract an estimate 

for physiological interferences. As it is shown in Figure 7.a, b 

the constrained adaptive filters which uses wavelet transform 

performs better than the other unconstrained adaptive filters. 

The superiority of this performance can be accorded to both 

the type of the employed transform and the method for 

estimation the weights of its components. As can be clearly 
seen in Figure 7, among estimation methods for the weights of 

the wavelet components, CLMS outperforms the other 

estimation methods and results in the least mean square error. 

We believe this is the consequence of involving protocol 

constraint into the estimation procedure which avoids the 

algorithm from falling into local optimums and extracts the 

estimated EHR quite similar to its simulated counterpart. Our 
method also produces the largest centered correlation between 

the recovered and simulated hemodynamic signals. This 

correlation delineates how well our method estimates the 

simulated signal details. We guess the reason that makes the 

wavelet transform stand apart from the other tested transforms 

is its multi resolution nature. The constituents which make up 

the near channel signal ranges over multiple resolutions due to 

their sources. These components range from B-Waves, M-

Waves, Respiration which belong to low frequency section, up 

to Heart beat which is treated as the high frequency 

component. Because Wavelet transform considers resolution of 
the signals in its decomposition procedure, it is more likely to 

decompose the near channel signal into components which are 

close to these real world signals. 

(a) 

 
(b) 

 

Figure 7. a) mean squared errors (MSE) b) pearson R2 coefficients, between 

simulated and recovered evoked hemodynamic response. The bars represent 

the mean and the error bars symbolize the standard deviation over all subjects. 

Our method also produces lower variance in multiple runs of 

the algorithm which makes its results more reliable than 

competing methods. We believe that this desired property 
arises from the fact that we have employed the transform and 
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estimation methods which makes it more probable to extract 

signals with meaningful real world counterparts. We also use 

an adaptive procedure in a hope to capture the non-stationary 

characteristics of the physiological components of the fNIRS 

signals. This makes our algorithm capable of estimating the 

time varying weights for wavelet components which can be 
thought of time-varying parameters of the underlying model for 

the signals. This joint with the fact that we impose no 

assumption on the amplitude, shape, and duration of the EHR 

signals make the whole algorithm robust against multiple 

sources of variations. 
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