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Abstract—In this paper a new input estimation method is
proposed for a class of nonlinear stochastic systems in the
presence of time dependent unknown inputs, when the system
states and process noises are unknown but bounded. In this
study, a new augmented state vector is constructed by adding
unknown inputs as a new state to the original state vector. Then
a recursive algorithm based on unknown but bounded (UBB)
uncertainty is developed , that unlike the Bayesian models which
consider the state estimate as a single vector, produces a time-
varying set of state estimates that contains the system’s true
state. The particular sets to be discussed, are ellipsoids. The
proposed method doesn’t need any unknown input detection stage
procedure and covariance resetting that are necessary in previous
works. At last, efficiency of the proposed method is shown in a
numerical simulation for a nonlinear system.
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unknown but bounded uncertainty

I. INTRODUCTION

State estimation play an important role in process control,
performance monitoring, traffic control, robotics and defense
[1].
The well known approach to solve state estimation problem
is Kalman filter (KF) [2], it is an optimal filter for linear
systems, but most of the systems in practical applications
are nonlinear. Thus many alternative filtering schemes, such
as extended Kalman filter (EKF), unscented Kalman filter
(UKF) [3], cubature Kalman filter [4], interactive multiple
model Kalman filter [5] and particle filter (PF) [6] have been
developed to improve capability of handling nonlinearities
and uncertainties.
However, in most of the practical situations, systems are
subject to unknown constant or unknown random biases,
modeling errors or system uncertainties.
The key point in this problem is input detection and estimation
(IDE). Most familiar filters which have been dealt with this
problem are introduced as follows. Input estimation (IE)
method for detecting and obtaining the unknown inputs of a
system has been proposed in [7]. It detects the existence of
unknown input by calculating the measurement residual over
a finite detection window, then estimates the unknown input

by least squares algorithm, and finally estimates the system
states using the estimated input. So, delay phenomenon and
large state estimation error is inevitable in this approach.
In [8],[9] modified IE (MIE) and enhanced IE (EIE) were
developed respectively to overcome the deficiencies of the
original IE. The idea of state augmentation has been proposed
In [10]. This approach estimates observation bias along with
system states by including the bias parameters as additional
state variables. In [11] unknown input is considered as an
additive state in the original state vector, and then a Kalman
filter is developed for the model. However, not only this
method is just applicable for linear systems, but also it needs
covariance resetting whenever a change in unknown input
happens. Recently, two stage kalman filter (TKF) has been
proposed for linear systems with unknown constant biases
[12] or random biases [13]. In [14] and [15] general two
stage EKF (GTEKF) and two stage UKF (TUKF) have been
proposed respectively, for nonlinear systems in the presence
of unknown inputs.
However, the basic idea for the estimation procedure in
these mentioned algorithms and all traditional approaches
is to combine knowledge of the system dynamics with the
noisy observations to calculate a time-varying single vector,
the actual estimate is a set in state space which contains
the true state of the system rather than a single vector. In
other words, determination of the smallest estimate set is
theoretically straightforward but computationally infeasible
for most practical problems [16]. Also it should be noted
that, all mentioned algorithms have assumed that we know
probability density function (PDF) of system process and
measurement noises, but there is no precise knowledge about
them, because of inherent time dependency of uncertainties.
Motivated by the above discussion, we want to develop an
augmented model to omit unknown input detection stage
procedure, in order to overcome the delay phenomenon in
input estimation methods and design recursive augmented
UBB-EKF (AUBB-EKF) that yields a bounding ellipsoid
which contains the true state, in real time.
The paper is organized as follows. In section II, we review



a class of nonlinear stochastic systems in discrete time and
present the unknown input estimation problem. An augmented
model will be proposed by adding the unknown input term
as a new state to the original state vector, in section III.
AUBB-EKF is developed for nonlinear systems with unknown
inputs in Section IV. The effectiveness of the introduced
method is shown in section V. Finally some conclusions are
given in section VII.

II. STATEMENT OF THE PROBLEM

Consider the general class of the nonlinear systems with
unknown inputs. The plant under consideration

X(K + 1) = f
(
X(K), u(k)

)
+ w(k)

Z(k) = h
(
X(k), u(k)

)
+ v(k)

(1)

Where X(k) ∈ Rn1 , Z(k) ∈ Rn2 and u(k) ∈ Rn3 are the
system states, measured output and unknown input, and the
dimension of X, Z and u are n1 × 1, n2 × 1 and n3 × 1
respectively.
Assumption 1. w(k) and v(k) denote the process and mea-
surement additive noises, respectively. Where both of them
are white unknown but bounded processes and X(0) is an
unknown-but-bounded initial state vector such that

X(0) ∈ ΩX(0), v(k) ∈ Ωv(k), w(k) ∈ Ωw(k) (2)

where

ΩX(0) = {X(0) : X(0)Tψ−1X(0) ≤ 1}
Ωw(k) = {w : wTQ−1w ≤ 1}
Ωv(k) = {v : vTR−1v ≤ 1}

(3)

That ψ, Q and R determine the size and shape (shaping matrix)
of initial condition, process and measurement noise ellipsoids,
respectively.
Assumption 2. ΩX(0), Ωv(k) and Ωw(k) are sets whose size
and shape can change with time. The sets are usually consid-
ered as ellipsoids. It should be noted that X(0), v(k), w(k)
are uncorrelated. To be more precise

E{X(0)wT (.)} = 0, E{X(0)vT (.)} = 0,

E{w(.)vT (.)} = 0
(4)

III. AN AUGMENTED MODEL FOR NONLINEAR SYSTEMS
WITH UNKNOWN INPUTS

In this section a new model for nonlinear system (1) is
proposed. Using this model, we do not need any unknown
input detection stage procedure.

XAug(k + 1) = ΦAugXAug(k) + F
(
XAug(k)

)
+ wAug(k)

(5)
Where :

XAug(k) =

[
X(k)
u(k)

]
,ΦAug =

[
0n1×n1

0n1×n3

0n3×n1
In3×n3

]
,

F
(
XAug(k)

)
=

[
f(XAug(k))

0n1×1

] (6)

The new augmented system process noise is

wAug(k) = GAugw(k) (7)

where

GAug =
[
I 0

]T
(8)

Remark 1. Regarding to bounding elements of GAug , WAug

remains an UBB process.
According to the assumptions 1 and 2, it is obvious that

E{wAug(k)} = 0, E{wAug(k)XT
Aug(k)} = 0 (9)

Thus system (1) can be rewritten as follows

XAug(k + 1) = ΦAugXAug(k) + F
(
XAug(k)

)
+ wAug(k)

ZAug(k) = h
(
XAug(k)

)
+ v(k)

(10)
Remark 2. Unlike the most unknown input estimation
methods which detection delay causes large estimating errors,
the proposed model omits input detection process. So, the
concurrent estimation of states and unknown inputs eliminates
the delay phenomenon.

IV. MAIN RESULTS

In this section we aim to develop AUBB-EKF algorithm
using the augmented model (10). Since there is nonlinear
terms in the system process and measurement model, we
should compute the Jacobian matrices to facilitate the later
developments.
Compute the process model Jacobians as

F (k) =
[
∇XAug(k)

(
FT
(
XAug(k)

))]∣∣∣∣
XAug(k)=X̂Aug(k|k−1)

(11)
Compute observation model Jacobian as

H(k) =
[
∇XAug(k)

(
hT
(
XAug(k)

))]∣∣∣∣
XAug(k)=X̂Aug(k|k−1)

(12)
The shaping matrix of the augmented system process noise is
obtained as

QAug(k) = cov
{
wAug(k)wTAug(k)

}
= GAugQ(k)GTAug

(13)

The linearized model of the system is

XAug(k + 1) = F ∗(k)XAug(k) + wAug(k)

ZAug(k) = H(k)XAug(k) + v(k)
(14)

where

F ∗(k) = ΦAug + F (k) (15)



Fig. 1: Vector sum of two convex sets [16]

A. Augmented unknown but bounded EKF
As mentioned before, noise processes and initial condition

are in ellipsoid form. According to set theory [16], an
ellipsoid can be represented by a support function. Support
function of a closed convex set is defined by

s(η) = max{xT η}, s.t.ηηT = 1 (16)

The set can be expressed as

Ω = {x|xT η ≤ s(η) (∀η), s.t.ηT η = 1} (17)

If Ω is an ellipsoid, it can be expressed as

Ω = {x|xTΓ−1x ≤ 1} (18)

Where Γ determines the shape and size of it.
The vector sum (Minkoski sum) of two convex sets, is defined
by

Ω1+2 = {x|x = x1 + x2, ∀x1 ∈ Ω1 ∀x2 ∈ Ω2} (19)

The vector sum operation is shown in Fig.1 According to
definition of support function (16), support function of Ω1+2

is
s1+2(η) = s1(η) + s2(η) (20)

The support function of the ellipsoid Ω (18) is represented by

s(η) =
√
ηTΓη (21)

The vector sum of two ellipsoids is

s1+2(η) =
√
ηTΓ1η +

√
ηTΓ2η (22)

It is obvious that the vector sum of two ellipsoids may be not
an ellipsoid. In order to come over this problem, we can use
a bounding ellipsoid which contains the Ω1+2.
A special case of Holder’s inequality is

(1− β)−1b21 + ρ−1b22 ≥ (b1 + b2)2, 0 ≤ ρ ≤ 1, 0 ≤ β ≤ 1
(23)

Substituting s1(η) and s2(η) into (23) implies that

sb(η) =
√
ηT
(
(1− β)−1Γ1 + ρ−1Γ2

)
η (24)

Regarding to (14) and (24) , support function and bounding
ellipsoid of ZAug will be

sZAug,b(η) =
√
ηT
(
(1− β)−1R+ ρ−1HΣHT

)
η

ΩZAug,b = {ZAug|ZTAug(HΣ̃HT + R̃)−1ZAug ≤ 1}
(25)

Similarly, bounding ellipsoid of XAug(k + 1) will be

Ωx,b(k) = {x|xTΓ−1(k)x ≤ 1}

Γ(k + 1) =
1

1− β(k)
F ∗(k)Γ(k)F ∗T (k) + Q̃Aug(k)

(26)

Solution of AUUB filtering problem, consists two phases
1) Calculate ellipsoid ΩX̂Aug

(k + 1|k) such that

vectorsum
[
ΩF∗X̂Aug

(k|k),ΩwAug
(k)
]
⊂ ΩX̂Aug

(k + 1|k)
(27)

2) Calculate ellipsoid ΩX̂Aug
(k + 1|k + 1) such that

ΩX̂Aug
(k + 1|k + 1) ⊂

[
ΩX̂Aug

∩ ΩXAug|ZAug
(k + 1)

]
(28)

Regarding to the above statements, AUBB-EKF can be written
in form

ΩX̂Aug
(k + 1|k + 1)

=
{
XAug|

[
XAug − X̂Aug(k + 1|k + 1)

]T
× Σ−1(k + 1|k + 1)

[
XAug − X̂Aug(k + 1|k + 1)

]
≤ 1
}

(29)
X̂Aug(k + 1|k + 1)

= F ∗(k)X̂Aug(k|k) +K(k + 1)

×
(
ZAug(k + 1)−H(k + 1)F ∗(k)X̂Aug(k|k)

) (30)

K(k + 1) = Σb(k + 1|k + 1)HT (k + 1)R̃−1(k + 1) (31)

Σb(k + 1|k + 1)

= Σ̃(k + 1|k)− Σ̃(k + 1|k)HT (k + 1)

×
[
R̃(k + 1) +H(k + 1)Σ̃(k + 1|k)HT (k + 1)

]−1
×H(k + 1)Σ̃(k + 1|k)

(32)
Σ(k + 1|k + 1) =

(
1− δ2(k + 1)

)
Σb(k + 1|k + 1) (33)

Σ(k + 1|k) =
1

1− β(k)
F ∗(k)Σ(k + 1|k)F ∗T (k) + Q̃Aug

(34)

Σ̃(k + 1|k) =
1

1− ρ(k + 1)
Σ(k + 1|k) (35)

δ2(k + 1) =
[
ZAug(k + 1)−H(k + 1)F ∗(k)X̂Aug(k|k)

]T
×
{
H(k + 1)Σ̃(k + 1|k)HT (k + 1) + R̃(k + 1)

}−1
×
[
ZAug(k + 1)−H(k + 1)F ∗(k)X̂Aug(k|k)

]
(36)



Where

R̃(k) =
1

ρ(k)
R(k), Q̃Aug(k) =

1

β(k)
QAug(k)

0 ≤ ρ(k) ≤ 1, 0 ≤ β(k) ≤ 1

x̂(0|0) = 0, Σ(0|0) = ψ

(37)

Remark 3. X̂Aug is the center of bounding ellipsoid estimate
set ΩX̂Aug

, and Σ determines the size and shape of it. So,
AUUB filtering model yields an estimate set. If we consider
X̂Aug as the best estimate of system state, and the Σ as
covariance of error, it will be similar to Bayesian uncertainty
based estimation.
Remark 4. Equations (29)-(34) denote estimated set, es-
timated system states, Kalman gain, maximum estimation
error, estimation error and one step ahead prediction error
respectively.
Remark 5. AUBB-EKF is similar to Bayesian based EKF,
except β(k), ρ(k) and δ2(k + 1) terms. Equation (33) shows
that δ2(k+ 1) makes the shaping matrix, a function of obser-
vations. So, unlike the Bayesian approach we can’t calculate
estimation error offline, but the maximum error estimation can
be calculated independent of observations from (32).

V. SIMULATION RESULTS

In this section, the performance of the filtering algorithm
developed in this paper is demonstrated. For nonlinear
filtering with unknown inputs, to show the efficiency of
our proposed algorithm in comparison with two existing
algorithm, MIE and two stage EKF (TEKF), we consider the
target scenario considered in [17].
Consider an object which is launched from one point on
Earth to another point along a ballistic flight. The kinematics
of the ballistic object in the reentry phase is derived under
the following hypotheses. The forces acting on the target
are gravity, and drag. The effects of centrifugal acceleration,
Coriolis acceleration, wind, lift force, and spinning motion
are ignored, due to their small effect on the trajectory.
The target motion and measurement equation is described by
the following nonlinear discrete-time model with unknown
inputs and multiplicative noises.

X(k + 1) = Ψ
(
X(k)

)
+ C(k)u(k) +G(k)w(k)

Z(k) = H(k)X(k) + v(k)
(38)

where
Ψ
(
X(k)

)
= F (k)X(k) +G(k)f

(
X(k) (39)

F (k), G(k), H(k), C(k) are defined as follows

F =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

 , G =

[
T 2

2 T 0 0

0 0 T 2

2 T

]T

H =

[
1 0 0 0
0 0 1 0

]
, C =

[
T 2

2 T 0 0

0 0 T 2

2 T

]T (40)

In the above, T is the sampling time between two successive
measurements.
The drag is a force directed in opposition to the target speed
and with an intensity equal to 1

2 ( gβ )ρv2 being: g the gravity
acceleration, β the ballistic coefficient, ρ the air density
(typically it is an exponentially decaying function of height,
ρ = c1e

−c2y where c1 = 1.227, c2 = 1.093 × 10−4, for
y < 9144m, and c1 = 1.754, c2 = 1.49×10−4 for y ≥ 9144m
and v the module of target velocity. In terms of state vector
components, the drag is

f
(
X(k)

)
= −1

2

g

β
ρ
(
y(k)

)(
ẋ2(k) + ẏ2(k)

)
×

cos
(

arctan
( y(k)
x(k)

))
sin
(

arctan
( y(k)
x(k)

))
 (41)

We could simplify the above formula by exploiting the fol-
lowing equalities

cos

(
arctan

(
y(k)
x(k)

))
= x√

x2+y2

sin

(
arctan

(
y(k)
x(k)

))
= y√

x2+y2

(42)

Then

f
(
X(k)

)
= −1

2

g

β
ρ(y(k))

√
ẋ2(k) + ẏ2(k)

[
ẋ(k)
ẏ(k)

]
(43)

At first we have to calculate Jacobian matrixes.
By using the Taylor series expansion around X̂(k|k)

Fj(k) =
[
∇XAug(k)

(
fT
(
XAug(k)

))]
(44)

F [1, 1] = 0, F [2, 1] = 0

F [1, 2] = −0.5
g

β
ρ
(
y(k))

2ẋ2(k) + ẏ2(k)√
ẋ2(k) + ẏ2(k)

F [1, 3] = 0.5
g

β
c2ρ
(
y(k))ẋ(k)

√
ẋ2(k) + ẏ2(k)

F [1, 4] = F [2, 2] = −0.5
g

β
ρ
(
y(k))

2ẋ2(k)ẏ2(k)√
ẋ2(k) + ẏ2(k)

F [2, 3] = 0.5
g

β
c2ρ
(
y(k))ẏ(k)

√
ẋ2(k) + ẏ2(k)

F [2, 4] = −0.5
g

β
ρ
(
y(k))

ẋ2(k) + 2ẏ2(k)√
ẋ2(k) + ẏ2(k)

(45)

In the example we consider the unknown inputs as
[0g 0g]T for t ≤ 99s and for t > 99s target begins to maneu-
ver. Acceleration in x direction is considered as a harmonic
type unknown input with frequency of 50 Hz and magnitude
of 7g, between 200-300 seconds. Acceleration in y direction is
considered as a pulse type unknown input with magnitude 9g
between 60-200 seconds. Where g = 9.8 m/s2, T = 1s and
the covariance matrix of the system process and measurement
noises are R = 10e−3I2×2, Q = 10e−3I2×2. The initial state
and estimate vector and the corresponding covariance matrix
are chosen to be X(0) = [500 −50 200 100]T , X̂(0) =
[1 1 1 1]T , P (0|0) = 10I4×4 .
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Fig. 2: The actual and estimated positions and their relevant
estimation errors
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Fig. 3: The actual and estimated velocities and their relevant
estimation errors

VI. DISCUSSIONS

Fig. 2, Fig. 3, Fig. 4 and Fig. 5 show the performance
comparisons of MIE, TEKF and the proposed AUBB-EKF
method. As we discussed in the introduction, the MIE method
calculate the measurement residual by using the technology of
sliding window to detect the abrupt occurrence of unknown
input term (acceleration). After that, estimates the unknown
input and system states. It is clear from the results that this
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Fig. 4: The actual and estimated accelerations and their
relevant estimation errors
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Fig. 5: The actual and estimated accelerations and their
relevant estimation errors (magnified)

approach can’t detect the onset time of maneuver real-time,
and has large state estimation errors. Unlike MIE, TEKF can
detect the change of unknown input efficiently. This approach
estimate non-harmonic inputs with an overshoot, also it is
obvious that, TEKF can’t estimate harmonic ones. This defect
can be observed from Fig. 5, which indicates that TEKF track
the unknown input with a bias. On the contrary, AUBB-EKF



TABLE I: Monte-Carlo simulation results for 200 run at
t=100*T (ignoring initial transitions)

Error AUBB-EKF TEKF MIE

X-position (km) 3.08e-05 3.66e-05 1.12
Y-position (km) 1.58e-04 2.71e-04 1.11
X-velocity (km/s) 2.16e-07 5.15e-07 0.1
Y-velocity (km/s) 4.80e-08 1.91e-07 0.046
X-acceleration (harmonic) (g) 0.0225 0.0484 4.14
Y-acceleration (pulse) (g) 5.74e-04 0.003 0.41

method, doesn’t have any limitation on the type of the
unknown input and it can estimate both harmonic and non-
harmonic inputs with minimum steady state error and without
overshoot. Moreover due to the fact that we have eliminated
the detection stage process. So, it detects the occurrence of
unknown input in real time and produces much less position
and velocity tracking errors.
Table 1, shows the performance of MIE, TEKF and the pro-
posed AUBB-EKF method based on the indexes of position,
velocity and acceleration root mean squared errors (RMSE)
which computed by 200 Monte-Carlo runs. The results indicate
that, AUBB-EKF method has the best performance in all of the
scenarios and can be more applicable to the practical systems.
Bayesian model considers a little chance for states to become
unbounded. Thus, TEKF has lower performance respect to
AUUB-EKF. On the other hand, the MIE method has the worst
results, because of delay phenomenon.

VII. CONCLUSION

In this paper, we have made one of the first few attempts
to design the augmented unknown but bounded EKF for
nonlinear stochastic systems with time dependent unknown
inputs. Unlike the most existing approaches which estimate a
single estimate vector of system states, the proposed method
calculates a bounding ellipsoid estimate set which contains the
true state. Moreover, delay phenomenon in input estimation
approaches has been solved by augmenting unknown inputs
with the original state vector. Finally the effectiveness of the
developed method has been shown in a numerical simulation
example.
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