
Online Visual Gyroscope for Autonomous Cars

Abstract—Knowing the exact position and rotation is a crucial
necessity for the navigation of autonomous robots. Even in
outdoor environments GPS signals are not always accessible for
estimating online rotation and position of robots. Also inertial
aided navigation methods have their own defects such as the drift
of gyroscope or inaccuracy of accelerometer in agile motions and
environmental sensitivity of compass.

In this article, we have introduced a novel online visual
gyroscope that can estimate the rotation of a moving car with
analyzing the images of a monocular camera installed on it.
Our real time visual gyroscope utilizes an efficient method
of rotation estimation between each pair of camera frames
neither considering 3D points nor vanishing points. Instead, our
approach assumes a fixed depth for the majority of matched key
points between two frames which is more prevalent in outdoor
environments like the case of autonomous car. We also analyzed
different methods of extracting 2D correspondences between
two frames and concluded the optimum factors for a real time
implementation. Based on these determinations, we evaluated our
visual gyroscope in several datasets from KITTI benchmark and
showed that it can estimate the rotation with the rate of 10 frames
per second and has the average drift of 0.08 deg per frame.

I. INTRODUCTION

Accurate estimation of the position and orientation of a
robot or any other kind of autonomous vehicle is a necessity for
its navigation process. Traditionally, several navigation sensors
such as gyroscope, GPS, accelerometer and compass were
used in order to address this problem. Nowadays due to the
accessibility of robots to the GPS data in outdoor environments
and utilization of fusion algorithms, the (x,y) coordinates of
the robot and its rotation can be estimated with a relatively
good precision [1]. However, each one of these sensors has
its own drawbacks and especially in some cases all or a
number of them are not available. The GPS signals even in
outdoor environments are not always accessible and in some
locations the robot may miss its connection to the satellite
transferring signals. The gyroscope and accelerometer, on the
other hand, are always accessible but have other defects. The
gyroscope suffers from drift and unknown initial state and the
accelerometer is sensitive to agile movements [2]. Thus we
can say still there is not a final solution for this issue.

Contemporary advances in image processing techniques
and computer vision applications, have persuaded researchers
to contemplate camera as a new navigation sensor for estimat-
ing rotation and translation of a moving system like a robot.
In this article that we have focused merely on the rotation
estimation, the camera can be used as a visual gyroscope for
computing robot’s orientation. The term of visual gyroscope
has been recently introduced by Hartmann et al. in [3] for
merely estimating rotation of camera. They have used a series
of camera frames and estimated the relative rotation for each
pairs of frames like a gyroscope sensor. Then they optimize all
of relative rotations for a group of frames in a global coordinate
frame. The main drawback of this work is its slow rate of

processing especially for an acceptable amount of accuracy. It
also can not indicate the online rotation for each frame due to
the necessity of optimization for a sequence of camera frames.

The contribution of this paper is to use a prevalent feature
of camera images in autonomous cars in order to propose
an efficient method of estimating camera rotation. This new
approach does not have the constraints used in previous works
such as dependency on the existence of vanishing points.
It also does not rely on building 3D point correspondences
between two camera frames; therefore, it can handle the issue
of rotation estimation between each pair of camera frames
expeditiously. All of these features of the proposed method
makes it suitable to be utilized as a visual gyroscope for
online estimation of camera rotation. This paper also examines
different ways of implementing feature detection and matching
between two frames regarding their accuracy and speed. Using
all of these evaluations, we provided the methodology of
implementing a practical visual gyroscope that can be used
in most of outdoor environments by autonomous cars or other
vehicles.

II. RELATED WORKS

Up to now several methods have been proposed for the
visually rotation estimation of moving cameras. SLAM and
SFM based methods (e.g. [4] and [5]) can give the relative
rotation between frames as a part of their results; however,
these methods are not efficient for merely rotation estimation
due to their time consuming 3D map building. Visual odometry
based methods (e.g. [6], [7]), on the other hand, try to figure
out the rotation and translation of the camera by analyzing
each pair of frames key points without regarding of building
3D points.

Among visual odometry methods, there have been some
works that merely estimate the rotation of the camera [3],
[8], [9], [10], [11], [12], [13], [14]. Using vanishing points
in the camera frame for rotation estimation, most of these
methods are not applicable for outdoor environments that
plague with lack of vanishing points. [3], [12] are another
methods that estimate the rotation for a group of images in
a global coordinate frame. These methods, for having good
accuracy, should analyze a large number of frames and need
a longer time to compute relative rotation of each frame.

Kneip et al. recently proposed two geometric methods [13],
[14] for the rotation estimation between two camera frames
that each one has its own challenges for practical applications
like our autonomous car. The method proposed in [13] provides
up to 20 solutions for the rotation estimation between two
frames among which finding the best answer is a crucial
task. Also the optimization method proposed in [14] needs an
initial rotation that makes it inapplicable for estimating large
rotations. These methods and also some other popular methods
have been implemented in a library called ”OpenGV” [15]



that was significantly helpful for our experiments in order to
evaluate previously related approaches.

III. VISUAL GYROSCOPE

In this section we will introduce steps that we followed
in order to implement a visual gyroscope that estimates the
rotation between each pairs of camera frames. This procedure
can generally be decomposed into two separate parts. In the
first step, two sequent camera frames are analyzed in order
to find correspondent points between them. For this purpose,
key points of the images are detected and the nearest points
from each frame are matched together as correspondences. In
the second step, the rotation between these two groups of
correspondences is estimated. Hence at first we introduce a
previous related method that finds the rotation between 3D
correspondences and then explain how we applied this method
on the 2D correspondences. In the following we will cover
these two steps in more detail.

A. Feature Detection and Matching

We used feature detection and matching methods in or-
der to find correspondent key points in each pairs of cam-
era frames. Although in some previous works such as [16]
researchers devised a new method of key point detection,
we decided to use a prevalent key point detector instead
of focusing on proposing a new one. For this purpose, we
evaluated several previously introduced feature detectors and
descriptors to find out an efficient combination of them with
good accuracy and speed in rotation estimation. Finally we
selected the FAST key point detector [17] and SIFT [18],
BRIEF [19], BRISK [20], ORB [21] and FREAK [22] feature
descriptors to be considered in our future experiments and
evaluated their efficiencies. We also investigated the accuracy
and speed of each descriptor with different number of key
points retained from feature detection process. A comparison
on the average running time and also average rotation error
for each descriptor with different retained key points is visible
in the Fig. 1 and Fig. 2. The characteristics of the system
that we used for this comparison is explained in the fourth
section of this paper. One can choose an appropriate feature
descriptor and suitable number of retained key points based on
the constraints that is needed such as speed, accuracy or both
of them. For our visual gyroscope, we mainly prefer to have
a real time processing rate (ex. 10 frames per second), so we
decided to choose fast descriptors with minimum number of
retained key points.

B. Rotation only estimation

In this section, we will focus on the procedure of estimating
rotation between two sequent camera frames that is needed in
order to compute roll, pitch and yaw angles at each moment.
For this purpose we will first review a previously proposed
method of mere rotation estimation by Arun et al. [23] that
uses 3D point correspondences between two frames. Then we
will introduce our method that adopt Arun’s method for mere
rotation estimation without any 3D point calculation.
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Fig. 1. Average running time of rotation estimation for each frame using
different descriptors with different retained points
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Fig. 2. Average angular error for each frame using different descriptors with
different retained points

1) Rotation only estimation from 3D points: Up to now sev-
eral methods have been proposed for estimating rotation and
translation matrices between 3D correspondences; however,
for our visual gyroscope we are only interested to compute
the rotation matrix. Hence we decided to first decouple the
rotation and translation effects in the transformation between
two frames and then merely focus on the rotation matrix
estimation. For this purpose an efficient method has been
proposed by Arun et al. [23] that tries to omit the effect
of translation on 3D points and then estimate pure rotation
between them. In this method, two correspondent 3D points
(pi and p′i: i = 1,2, ..., N ) are supposed to have this relationship
with each other:

p′i = Rpi + T (1)

For removing the effect of translation, Arun et al. proposed
to calculate relative location of each 3D point from the mean
point of its relevant set. We call these currently produced points



qi and q′i for the first and second 3D sets respectively that are
computed using these equations:

qi = pi −
1

N

N∑
k=1

pk (2)

q′i = p′i −
1

N

N∑
k=1

p′k (3)

Now according to Arun et al., we can say that qi and q′i have
merely the rotation transformation between each other and this
equation confirms for them:

q′i = Rqi (4)

Arun’s method defines H as the covariance matrix between qi
and q′i points like below. Then it derives the rotation matrix
from computing the Singular Value Decomposition (SVD) of
H:

H =

N∑
i=1

qi q
′t
i (5)

H = U Λ V t (6)

Finally the rotation matrix (R) between 3D correspondences
based on the Arun’s method is achieved through this equation:

R = V U t (7)

Note that valid rotation matrix should have determinant
equal to +1, in other case (pretty rare case) the algorithm would
fails [23].

2) Our method for rotation only estimation without 3D
points: In most of previously proposed methods, in order
to find rotation and translation between two sequent camera
frames, at first the 3D location of matched correspondent
key points should be built through a process called feature
triangulation [24]. Being helpful only for robust translation
magnitude estimation, feature triangulation is not really neces-
sary for merely rotation estimation between two frames. Thus
we will provide a rotation estimation solution for our visual
gyroscope based on bearing vectors. In this section at first we
will show how bearing vectors are computed for each set of
correspondences. Then we will express how we applied Arun’s
rotation estimation method on our computed bearing vectors
without triangulation and building 3D points.

Bearing vectors are 3D unit vectors in a unit sphere around
the camera center pointing to specific 3D locations in the world
space. Using the pinhole camera model, the bearing vector bi
for each image point measurement (ui,vi) can be computed by
an inverse calibration matrix multiplication [24]:

bi =
1

||K−1(ui, vi, 1)t||
K−1(ui, vi, 1)t (8)

Now in order to apply Arun’s method on the bearing
vectors instead of 3D points, we assume that most of detected
bearing vectors are referring to 3D points with equal distance
from the camera center. Based on this assumption, the location
of each 3D point pi has this relationship with its bearing vector
bi:

pi = λ ∗ bi + ni (9)

Which λ refers to the distance coefficient that is fixed for
all 3D points and ni is the variation. It is obvious that the
amount of ni varies for each 3D point; however, we neglect its
value in comparison with the distance coefficient for high depth
environments that the location of 3D points have enough great
distance from the camera. This situation usually occurs when
we work on outdoor environments especially the automobile
context which we can write this equation for the bearing
vectors:

pi = λ ∗ bi (10)

Note that we consider the λ as a fixed but unknown value
because we didn’t computed the exact location of 3D points.
Now we can apply Arun’s method for estimating decoupled
rotation between two sets of bearing vectors (bi and b′i)
computed by the above methodology. Hence we can write:

H =

N∑
i=1

(λbi) (λb′i)
t (11)

H = λ2
N∑
i=1

bi b
′t
i (12)

The rotation matrix based on the Arun’s method is derived
from the SVD of H matrix:

H = Uλ2ΛV t (13)

R = V U t (14)

As it is visible in the above equation, we can conclude that
the λ coefficient does not have any effect in the calculation of
rotation matrix and knowing its value is not necessary for this
regard. Thus we can compute the rotation matrix between two
sequent camera frames without utilizing 3D correspondences
by applying the Arun’s method on our 2D bearing vectors.

C. Outlier rejection

Due to the fact that in most of 2D correspondences between
two sequent frames there are some outliers, we applied the fa-
mous RANSAC scheme [25] on the two sets of bearing vectors
in order to choose the best rotation with maximum number of
inliers. For all of datasets that we used in our experiments, the
RANSAC number of iterations and distance threshold values
were assigned to 50 and 0.000002 respectively.

IV. EXPERIMENTS AND RESULTS

In this section we will study detailed results from our ex-
periments that aim to evaluate the efficiency of proposed visual
gyroscope. Two important determinants have been considered
to record in all experiments: 1) Rotation estimation accuracy
and 2) The running time. We will see that these two factors
have an inverse relationship with each other; therefore, an
online visual gyroscope has less accuracy comparing with an
offline one.



A. Datasets and Hardware

We have used 14 datasets from Karlsruhe [26], [27] and
KITTI [28] benchmarks that were gathered from a camera on
top of a moving car. All datasets have been selected from
different environments with different motions and conditions.
The total number of camera frames that we considered in our
experiments was more than 3300 frames using all 14 datasets.
In these dataset we assumed the IMU rotation data as our
ground truth due to its high accuracy and short duration of
each dataset (so the IMU drift is negligible). We also decided
to only investigate the yaw angle due to the fact that rotations
around other axises doesn’t have enough comparable changes
for a moving car. The processor used for executing computer
vision algorithms and other geometric parts was a Dual-Core
Pentium CPU with frequency of 2.8 GHz and 4 gigabytes of
RAM.

B. Number of Key Points

In this section we want to address the effect of number
of key points computed in each pair of camera frames on the
accuracy and the speed of visual gyroscope. Hence we devised
several experiments in which each time some specific number
of detected key points have been used. According to the Fig.
2, that shows the average yaw error for different descriptors
with different retained key points, considering more key points
in the computations can decrease the average yaw error and
lead to more accurate results. On the other hand, it is visible
in the Fig. 1 that increasing the number of retained key points
will increase the running time of rotation estimation for each
pair of camera frames. Thus we should consider a trade off
between the accuracy and the speed of computations. Since
the proposed visual gyroscope should operate in a real time
rate computation, about 10 frames per second, we decided to
use BRIEF feature descriptor and assigned the value of 100
as the number of retained key points in our experiments. It is
obvious that these parameters can be altered for achieving best
results in different processors with different speeds.

C. Accuracy of the real time visual gyroscope

In order to evaluate the accuracy of the proposed gyro-
scope, it was utilized in order to estimate relative rotation
between each pairs of camera frames in all datasets. Due
to the constraint of real time operation, BRIEF descriptor
with number of 100 key points were selected as expressed in
previous section. Using these parameters, the visual gyroscope
is capable of estimating the rotation of camera frames in a rate
of 10 frames per second which is considered an acceptable rate
for our datasets with the same frame rate.

Frame to frame yaw degree was derived from the estimated
rotation matrix R using the equation 15. Then the difference
of estimated yaw with the ground truth was computed as
the frame to frame yaw error. Fig. 3 shows the histogram
of absolute error of estimated yaw degrees for each pairs of
camera frames using all 14 datasets. As it is visible, in most
cases the proposed gyroscope has a an accuracy below 0.2 deg
in each frame. It also in some cases has errors greater that 0.2
deg and in some exceptions it has errors above 1 degree per
frame.

Y awvision = arctan (−R(3, 1), R(3, 2)2 +R(2, 2)2) (15)
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Fig. 4. Histogram of frame to frame relative error

We also computed the overall yaw degree in each frame
as the accumulation of frame to frame yaws in all previous
frames. Fig. 5 shows the result of yaw estimation for 9 different
datasets from KITTI benchmark. It is visible that based on the
conditions existed in each dataset, such as automobile’s speed
and the environment, the proposed gyroscope has different
precisions.

D. Drift estimation

Fig. 3 shows that in several cases the visual gyroscope
has a frame to frame error greater than zero and this may
evoke a huge amount of drift in the estimated yaw after a
long integration over previous frames. However, it is obvious
in the Fig. 5 that the proposed visual gyroscope does not have
such great drift in comparison with the ground truth even for
long datasets. In order to investigate this issue in more detail,
we provided the histogram of frame to frame relative error
instead of absolute error in Fig. 4. This Fig. shows that the
noise of proposed visual gyroscope has a zero mean Gaussian
distribution. Thus we can conclude that by integration over
huge number of frames the amount of error would be decreased
due to its Gaussian distribution.

In order to address the accuracy of the proposed gyroscope
by considering the Gaussian distribution of its error, we
followed a similar methodology called Allan Variance method
used for the determination of gyroscopes drift (ex. [29]).
Thus we defined several windows with lengths varied from
1 to 40 and for each window we computed the average error
of estimated rotation considering all datasets. If we call the
average drift for window of length l, Drift l, and assume
that we have N frames to analyze and want to compute the
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Fig. 5. Estimated and ground truth yaw degree for 9 datasets.

average drift for this window length we can write:

Drift l =
1

N/l

N/l∑
i=1

(i+1)∗l−1∑
k=i∗l

error frame k (16)

We computed the average error for all window sizes from 1
to 40 and the result of these experiments is shown in fig.
6. It is apparently visible in this diagram that the amount
of rotation estimation error is decreased by increasing the
length of window in experiments (from about 0.13 to 0.8
deg/frame) and after a while the average error is fixed around
0.08 deg/frame. Hence we can conclude that the amount of
drift for the proposed visual gyroscope is about 0.08 deg/frame.

V. CONCLUSION AND FUTURE WORKS

We have introduced a fast method of estimating rotation
between two camera frames without considering 3D points
or vanishing points. Instead, the proposed method assumes
a fixed depth for the majority of matched key points in
outdoor environments especially for autonomous cars. Using
this presumption, we modified a previously introduced efficient
method of rotation estimation for 3D correspondences on our
2D matched key points. We evaluated the accuracy of the
proposed method as a fast and accurate visual gyroscope
by estimating the yaw degree of a moving car in several
datasets from KITTI benchmark. We also investigated other
aspects for implementing a real time visual gyroscope such as
optimum feature descriptor and number of key points in our
computations. Finally we showed that this real time gyroscope
can estimate the yaw degree with the rate of 10 frames per
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gyroscope

second and with the average drift of 0.08 degree per frame.
Results of utilizing this real time visual gyroscope on several
datasets prove its efficiency and ability to be considered as
an independent gyroscope in the future works. The main idea
that should be considered in the future works is that efficient
approaches of accelerating the speed of the algorithm can lead
to utilizing more feature points in rotation computations and
finally improve accuracy of the visual gyroscope. Moreover,
some vision based techniques such as loop closure detection
can also be used in order to inhibit the effect of drift for long
time operations.
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