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Abstract— In this paper we study blind recovery methods 
for identifying the parameters of a convolutional code 
from an intercepted bitstream. It is assumed that the 
interceptor has no prior knowledge about the encoder and 
the recorded bitstream is noisy. The goal is to obtain three 
parameters of convolutional code including: (i) the number 
of inputs (ii) number of outputs (iii) the constraint length 
of the convolutional encoder. Given these parameters one 
can regenerate the encoder and fully decode the 
intercepted bitstream. While most related works focus on 
blind recovery methods for convolutional codes in noiseless 
bitstream, we propose a method to extract coding 
parameters from a noisy bitstream. We use these 
parameters to recover the generator matrix of the encoder 
and fully decode the bitstream. To evaluate our proposed 
method, we model the effect of noise on bitstram by binary 
symmetric channel and burst errors. Our simulation 
results indicate that the proposed scheme performs 
accurately in various scenarios. 
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I.  INTRODUCTION 

Channel coding is a must in communication systems in 
order to deal with noisy channels. Some channel codes also 
named as forward error correcting (FEC) codes add some 
redundancy to the bitstream for de-noising the received data. In 
the primarily stages of a communication interception 
(COMINT) system one needs to distinct the original data bits 
and the redundant coding bits in a codeword. This is done 
usually based on blind recovery techniques for channel codes. 

Blind recovery methods for channel codes have several 
applications in regulatory and intelligence organizations whose 
task is to identify and possibly intercept unknown signals that 
may violate regulations or pose a security threat. Channel code 
recognition along with automatic modulation recognition 
(AMR) is vital for a receiver which task is to identify an 
unknown signal. Other possible applications of channel codes 
recognition involve modem reconfiguration for various channel 

conditions, in which a receiver may automatically adapt the 
decoder to match the variable coding rate on a transmission. In 
addition, software defined radio (SDR) schemes may be 
employed where the encoding format can be changed 
arbitrarily for different purposes [1]. This study is intended to 
design a computationally efficient technique by which 
convolutional codes may be easily detected and recovered. 

In this paper, we study blind recovery methods for the 
convolutional codes and try to extract all parameters needed for 
decoding the data from a recorded noisy bitstream. 
Surprisingly, only a few papers deal with the reconstruction of 
convolutional codes. In the primary work, Rice presented a 
technique to determine the parameters of convolutional 
encoders of rate 1/n [2]. Filiol completed the method by 
generalizing it to any k/n rate [3]. Our paper is not the first to 
deal with the problem of finding parameters of a convolutional 
encoder. For instance Marazin has also used dual code 
properties to find the some parameters of convolutional codes 
[4]. However, our proposed scheme can identify the number of 
inputs, number of outputs and the constraint length of the 
convolutional codes in the presence of noise. Next, we use 
these parameters to recover the generator matrix of the encoder 
and fully decode the bitstream.  

In simulation section, we study the performance of our 
method for two types of errors. In the first case, the channel is 
assumed to be Binary Symmetric Channel (BSC) and in the 
second case, we add a burst error to the bitstream [5]. Our 
simulation results indicate that the proposed method can 
accurately find the parameters of convolutional codes in 
various scenarios.  

In the next section notations for convolutional codes are 
provided and dual code properties are studied. In section III 
we propose our technique for blind recovery of convolutional 
codes. The simulation results are presented in Section IV. 
Finally, the paper is concluded in Section V. 

 

II. CONVOLUTIONAL CODES AND DUAL CODE PROPERTIES 

Convolutional codes were first introduced by Elias in 1955 
as an alternative to block codes. Then in 1967, Viterbi 
proposed a maximum likelihood decoding scheme that was 
relatively easy to implement for codes with small memory 



orders. This scheme, called Viterbi decoding together with 
improved versions of sequential decoding, led to the 
application of convolutional codes to deep-space and satellite 
communications in early 1970s [6]. Let C be a convolutional 
code with ‘n’ outputs, ‘k’ inputs and ‘m’ memory input. It will 
be denoted as �(�, �, �), n encoder outputs at any given time 
unit depend on the k inputs at that time and also m previous 
input blocks. Typically, n and k are small integers with k<n, 
but the memory order m must be made large to achieve low 
error probabilities. In a special case when k=1, the information 
sequence is not divided into blocks and can be processed 
continuously. 

Each convolutional code has a generator matrix; 
convolutional codes are mainly defined with polynomial 
multiplications so the generator matrix of these codes is also 
made of polynomials. Let us denote by G(D) a polynomial 
generator matrix of rank k defined by: 
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Each g�,�(� = 1, … , �; � = 1, . . �) is a generator polynomial. 
The memory of a convolutional code is defined as follow: 
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Here, K in the equation (2) is the constraint length of the 
code, there are also other definitions for the constraint length 
but this definition is the most common. This parameter is of a 
great importance because the cost of Viterbi decoding 
algorithm depends on number of inputs and the constraint 
length of the code by 2����� [7]. 

If the input sequence is denoted by u(D) the output 
sequence will be described by: 

(3) v( ) ( ). ( )D u D G D  

In practice the generator polynomials are special 
polynomials which give the best error correcting capabilities to 
the code, the encoders which have the best error correcting 
capabilities are named as optimum encoders. These encoders 
have the maximum possible free distance among all other 
encoders with the same parameters (n, k, m) [12]. 

A convolutional code can be described with a dual code 
generator matrix, this matrix is a (� − �) × � dimensional 
matrix and will be denoted by H(D). For a parity check matrix 
we have: 
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We can conclude from the equation (4) that for every 
codeword V(D)  the following holds 
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For any parity check matrix there is a general format as 
equation (6): [4] 
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Now we introduce an important property of parity check 
matrix called dual code memory, from [8, 9] we can compute 
the dual code memory directly from the generator matrix as: 
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where ��’s  are defined in equation (2). 

So far we have used polynomials to describe convolutional 
encoders but in practice we have to deal with binary sequences 
so the binary form of matrices and equations will be very 
helpful for utilization of properties discussed. 

Binary form of the generator matrix can be written as: [6] 
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Similarly we can write a binary form of parity check matrix 
which was declared in equation (6), this form is demonstrated 
in equation (10): [4] 
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In equation (10), each sub matrix is: 



 
(11) 
 

1,1 1, 0

,1 , 0

( ) ... ( ) ( )

: ... : :

( ) ... ( ) ( )

k

i

n k n k k

h i h i h i

H

h i h i h i 

 
 
 
  

  

 

It is straightforward to show that the rows of the matrix (9) 
are shifted versions of a vector. As stated in [4] we can use the 
binary format of parity check matrix along with equation (5) 
and reconstruct the whole convolutional encoder from the 
noisy bitstream. But as it can be seen these equations are in 
need of convolutional encoder parameters, hence, we need to 
derive these parameters first. In the next section we describe 
our method for deriving these parameters from the recorded 
noisy bitstream. 

 

III. THE PRPOSED METHOD TO RECOVER CODING 

PARAMTERS 

Based on the construction of convolutional codes, the code 
space C is the span of the rows of generator matrix which is a k 
dimensional space. The dual codes are in the complementary 
orthogonal space of the code space. The dimension of this 
space will be equal to n-k. 

We place the bits of the recorded bitstream row by row in a 
matrix with L columns and large number of rows. This is called 
the interception matrix and denoted by R�. If the recorded 
bitstream is not noisy and the number of columns of R�  is set 
to be a multiple of n  (L=2n, 3n, …), then the matrix will 
become a rank deficit, but if L is not a multiple of n, then the 
matrix will be full rank with high probability.   

When the recorded bitstream is noisy the problem will be 
more complicated, since R� is likely to be full rank always. 
Note that equation (5) shows a linear relation between the 
columns of the interception matrix. When the bistream is noisy 
this relation still holds for most entries.  

There are two approaches to obtain dual codes from the 
noisy bitstream. The first approach is to look for low noise 
submatrices and try to find dual codes from these submatrices 
[10]. The second approach is to find dual codes from a matrix 
and check whether this code can be a candidate for dual code 
basis. Valembois algorithm is a primary work based on this 
technique [11].  

In the case of convolutional codes a similar method can be 
used; we will use the Valembois algorithm and reform it to find 
the parameters of a convolutional code.  

The rank of interception matrix has two possible values [4]: 
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where � = 1,2, … and parameter �� in equations (12), (13) is 
the smallest value of L for which R� is rank deficient. 

Although the above equations have been derived for block 
linear code, we can derive some equations in similar form for 
the convolutional codes.     

In our proposed scheme, we create several �� matrices for L = 
n, 2n, 3n,… . By using equation (13) if n is chosen correctly the 
normalized rank of these matrices will be a decreasing function 
as follow: 

 
(14) 

 

(R )nRank k

n n n
 

 



   

It should be mentioned that this property of convolutional 
code can be used to decide whether the received bitstream is 
encoded with a block code or a convolutional code. In the case 
of block encoder equation (14) will always have one value, and 
that value will be the rate of the encoder. 

For special case of 1/n rate codes which are very common, 
we can say = �� , also 
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For other coding rates: 
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In general case we will find some pairs for [�, ��] and we 
can examine each pair and to reconstruct the parity check 
matrix with these parameters.  

As mentioned earlier when we are dealing with noise, the 
rank cannot be computed directly by reduced row echelon 
form. Therefore, we compute dual space, and obtain the rank 
indirectly. 
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Valembois algorithm can be used to find ���(���
� ).  

 

Our proposed method is summarized as follow by two 
algorithms: 

Algorithm1: Checking whether bitstream is encoded with 
convolutional or block encoder, and obtaining the parameter n 

for  � = 2 to ���� 

 for � = 1, 2, 3, … 

  build intercepted matrix ��� 

compute  
����(���)

�.�
  

 end 

 if   values are decreasing  

then it is a convolutional code and 

n is obtained 

  break 

 end 



 else if  values are constant 

  bitstream is block encoded 

  n and k are obtained 

  break 

 end 

end 

if n is not found 

 bitstream is not block or  

convolutional code 

end 

 

Algorithm2: computing number of inputs and memory  

 

for k=1 to n-1 

compute � which is equal to 
���

�
 

 � = �� 

 if H is found for (n,k, ��) 

  H is parity check matrix 

  break 

 end 

end 

IV. SIMULATION RESULTS 

In this section we present our simulation results on the 
proposed method. We study the performance of the proposed 
method for two types of errors: BSC and burst. In a BSC 
channel the probability of a ‘0’ bit changing to ‘1’ bit is equal 
to probability of a ‘1’ bit changing to a ‘0’ bit, in other words 
the channel has an equal crossover probability. Since the error 
occurring in every single bit is independent of the other bits, 
the probability of error happening in this channel is modeled as 
an AWGN channel with hard decoding. In the second case, we 
add a burst error to the bitstream, in telecommunication a burst 
error is a contiguous sequence of symbol, received over a data 
transmission channel, such that the first and last symbols are in 
error and there exists no contiguous subsequence of q correctly 
received symbols within the error burst [5]. The integer 
parameter q is referred to as the guard band of the error burst. 
The last symbol in a burst and the first symbol in the following 
burst are accordingly separated by q correct bits or more. The 
parameter q must be specified when describing an error burst. 

Results of the technique proposed earlier in the paper is 
plotted for a C(3,1,4) encoder in Fig.1, and to demonstrate the 
performance in presence of noise, a normalized rank graph is 
plotted for a bitstream encoded via a C(4,1,4) encoder and 
transmitted through a channel with BSC noise and burst noise 
respectively in Fig.2 and Fig.3.  

In Fig.1, it can be seen that normalized rank which is 
depicted for n=3, is a decaying function. The red line in the 

Fig.1 is a constant value equal to 
���

�
=

�

�
. 

 

Fig.1. Normalized Rank for C(3,14) 

 

Fig. 2.  Normalized Rank for C(4,1,4) –BSC Noise 

 
Fig.3. Normalized Rank for C(4,1,4) –Burst Noise 



In Fig.2 the decreasing manner of the function is still 
apparent even with error probability of 0.04 and 0.08. 

In Fig.3, we have added a burst error to the bitstream, the 
maximum length of the burst error is q=8, and the probability 
of occurrence for this error is 0.04 and 0.08. 

By using this technique, parameters of the convolutional 
encoders with different rates are derived and additionally many 
vectors belonging to dual code space have been found which 
can be used to reconstruct the parity check matrix.  

The parameters which are derived from these algorithms 
can be further used in Filiol [3] or Marazin [4] algorithm to 
reconstruct the generator matrix of the code. If the algorithm 
stated in [4] is used, it is possible to use the vectors of the dual 
code that have been found through the introduced technique. 

 

V. CONCLUTION 

In this paper we studied blind recovery for convolutional 
codes. We introduced a new method for extracting 
convolutional coding parameters such as the number of inputs, 
number of outputs and the constraint length of the 
convolutional code from a noisy recorded bitstream. Next, we 
used these parameters to recover the generator matrix of the 
encoder and fully decoded the bitstream. Our simulation results 
show that the proposed can correctly recover the coding 
parameters under various scenarios. Our future work concerns 

reducing the computational complexity of our convolutional 
decoder by finding proper decoding matrices. 
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