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Abstract— In this paper, the problem of independent
component analysis based on maximum likelihood criteria has
been considered. This approach involves inversion of matrix in
each iteration (which is computationally complex). Therefore,
genetic algorithm and particle swarm optimization have been
proposed to be used for solving maximum likelihood ICA
problem. Results, given in MSE of estimating signals with
respect to source signals, show good performance of the
proposed algorithms. Also a comparison to traditional FastlCA
method has been presented, which shows acceptable
performance of the algorithms.
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. INTRODUCTION

NDEPENDENT Component Analysis (ICA) is one of main

statistical signal processing methods for separating desired
signals from their mixtures. The basic assumption in ICA
problem is that the source signals are assumed to be
statistically independent. Without any knowledge of the
nature of the main signals (and even how they mixed) except
their independency, ICA agorithms try to use different
criteria to estimate the independent components. ICA has got
many different applications new years, such as blind
separation of voice and image signals, feature extraction,
data communication and array signal processing [1].

Different ICA agorithms include an optimization problem
in their structure. Genetic Algorithm (GA) has been
previously used with different ICA agorithms to solve these
optimization problems. In [2], the sum of the absolute values
of kurtosis as a criterion for separating independent
components is used as the fitness function that should be
maximized by GA. In[3], anew ICA agorithm using GA for
the case of nonlinear mixture of source signals is proposed.
Also in [4], different criteria including mutual information
and negentropy, are considered and GA is used to optimize
the desired objective functions in these criteria. Finally in
[5], combined kurtosis and mutual information criteria have
been considered and solved by GA.

In this paper, we consider the maximum likelihood
approach of separating the source signals [1]. Conventional
methods of solving ICA problem in this approach are based
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on stochastic gradient ascent of some functions. These
iterative methods involve a matrix inversion in each iteration
which makes them time-consuming. Also they are not
efficient algorithms because of the computational complexity
of inverting a matrix in each step [1]. In this work, we
propose a new agorithm based on GA, the main advantage
of which is that there is no need to invert any matrix. The
proposed agorithm shows good performance in estimating
the independent source signals.

Also, Particle Swarm Optimization (PSO) is used to solve
this problem as another evolutionary approach. Note that the
problem formulation and the approach of solving it, is almost
similar for both evolutionary algorithms (GA and PSO).
Similar to GA, PSO has been aso used in some ICA
algorithms. In [6], the mutual information criteria for ICA
has been considered and solved by PSO. But the ML
criterion for ICA problem has never been solved by PSO.

This paper is organized as follows. At first we present the
ICA problem and ML approach for solving it. The proposed
algorithm based on GA is considered next. Also, as a
different approach, the proposed algorithm based on PSO is
described. Then the computer simulations are given. Finally
the conclusions are presented.

1. MAXIMUM LIKELIHOOD ICA
The ICA problem in its common form is formulated as
follows. Assume that there exist N independent sources,
si,i=12,..., N, wehave N observed signals x;,i =12,...,N
which are assumed to be linearly mixtures of the source
signals with an unknown matrix A . ; i.€. we have:

X =As @)

T

where X =[q,..., X1 and s=[s;,..,sy]" are observed

and source vectors respectively.
The ICA problem in its basic form is to find a matrix
Bnxn N order to estimate the source vector S using the

observed signals:
$=Bx 2
There exist different criteria for solving this problem,

some of which are nongaussianity, mutual information,
negentropy and maximum likelihood estimation [1]. In this



paper we consider the maximum likelihood approach. Using
(2), the density function of the observed signal can be
formulated as:

px (X) =|det B[ ps(s) =|det BI] ] pi(si) 3
[
After some mathematical manipulations, the log-
likelihood function can be written as[1]:
T N
log L(B) = "> log pi (b x(1))
t=1 i1 4

+T log|det B|

In this equation, it is assumed that we have T observation
of x, denoted by x(1), x(2), ..., xX(T). Also b;s are

different rows of matrix B ;i.e. B =(by,...by ).

In ML approach, (4) should be maximized with respect to
matrix B . But as it can be seen, it is a function of densities
of the independent components which are assumed to be
unknown primarily. To overcome this problem, these
densities are assumed to be one of two basic densities called
superguassian and subguassian, the logarithmic forms of
which are:

log B (s) = 1- 2log cosh(s)

2
log p (s)=1- {%— log cosh(s)} ®)

where p;"(s) and p; (s) are super- and subguassian
densities respectively. There is a test that can be used to
choose one of these two choices for a variable s. For this
purpose, one can compute the following egquation:

E{-tanh(s)s +(@1—tanh(5)%) (> 0= B
Et-tanh(s)s + (1—tanh(5)?) < 0= B (6)

Note that expectation is an average computed from T
samples of source signals (eg. 4). But to compute this test,
we should use samples of source signals which are unknown
and the main goal in ICA problem isto estimate these values.
So, some iterative methods are presented in literature, which
estimate the unknown values (matrix B and also source
signals) iteratively [1]. Starting with a random generated
matrix B, these algorithms compute a rough estimate of
source signals using (2) and then use this estimate to find the
form of densities by (6). The estimated forms of densities
(i.e. one of two formsin (5)) are then used in (4) to compute
the value of log-likelihood function. These steps are repeated

until the condition of convergenceis satisfied. Finally, values
of source signals can be estimated by (2) using final value of
B . Also FastICA approach is used to solve this problem [1].

In this paper, new approaches using GA and PSO are
proposed for solving this problem.

I1l. MAXIMUM LIKELIHOOD ICA BASED ON GA

The GA works on the Darwinian principle of natural
selection called "survival of the fittest". The main attraction
of GAsisthat they are the global optimization procedure and
require only the numerical values of the objective function
and constraints to direct the search [7].

The agorithm starts with a randomly generated set of
solutions called population. Each individual or chromosome
of the population can be a potential solution to the
optimization problem. The chromosomes evolve through
different iterations of GA. In each iteration, the value of the
desired objective function called fitness is evaluated for each
chromosome. Fitter individuals with better values of the
desired fitness function, have higher probability to survive to
next iteration. The two main operator of GA, crossover and
mutation, are applied to these individuals resulting new
chromosomes which can be better solutions for the
optimization problem. Different termination criteria such as
number of iterations can be used to stop the genetic
algorithm. Findly the fittest chromosome is considered as
the solution of the problem.

As it can be seen, we encounter with the maximization of
(4) to find the ML estimation of matrix B . So, we decide to
use genetic agorithm as a procedure to solve this
optimization problem. The main advantage of the proposed
algorithm is that it is not required to compute inversion of
matrices as for conventional methods.

A pseudo code for the proposed algorithm is as follows.

1. Encoding: The parameters to be optimized
should be encoded into genes and chromosomes.
Here the elements of matrix B are the desired
values to be optimized. We use a real-coded GA
to encode the chromosomes. A simple example
of such an encoding is as below:

4 5
B=ls 3 = chromosome=[4 5 6 3
Fig. 1. Example of encoding a chromosome

2. Initial population generation: Initial population
is generated randomly. The population consists
of Npqp chromosomes or individuals.

3. Density form estimation: Each chromosome can
be decoded as a matrix B that can be used to
compute a rough estimate of source signals using
(2). Related to each estimated signal, the forms of



densities of source signals can be estimated using

).

4. Fitness evaluation: Using the estimated forms of
densities, the fitness value corresponds to each
chromosome can be computed by (4).

5. Sdection: Some individuals should be selected to
be used for mating. Here, we use the traditional
roul ette wheel method.

6. Crossover: Simple one point and two point
crossover is used in this paper. The crossover
rate is set to have different values and the one
which has the best resultsis used to compare with
other agorithms.

7. Mutation: Gaussian mutation is used in this
paper. The mutation function adds a random
number taken from a Gaussian distribution with
mean O to each entry of the parent vector. The
variance of this distribution is determined by the
parameters scale and shrink. The scale parameter
determines the variance of Gaussian distribution
at the first generation. The shrink parameter
controls how the variance shrinks as generations
go by. The variance at the kth generation, is
given by the following recursive formula

) )

var, =varg_1(1-bx
Gen

where b and Ngg, are shrink parameter and total
number of generations of genetic algorithm [8].

8. Termination: If the number of generation equals
t0 Ngen» Stop the agorithm, elsego to 3.

Finally, the best chromosome is used as the best estimate
of matrix B and as a result, the estimate of source signals
can be computed using (2).

V. MAXIMUM LIKELIHOOD ICA BASED ON PSO

Particle Swarm Optimization is developed out of attempts
to model bird flocks and fish schools [7]. Initializing the
particles with random positions and random velocities, the
PSO algorithm tries to move the whole population through
the best position which is the solution of the problem. In
each iteration the algorithm updates the value of velocities
and positions of the particles using the values of previous
iteration, the best position of al particles in previous
iterations and also the best position of the particle itself in
previous iterations. The position of particles can be
considered as chromosomes of GA algorithm; i.e. they
contain the values of probable solutions to the problem. Each

particle is evaluated by the fitness function to be optimized,
the value of which considers the best particle.

Using an amost similar procedure to previous proposed
algorithm base on GA, we can solve our problem using PSO.
A pseudo code for the PSO based ML-ICA isasfollows:

1. Encoding: The parameters to be optimized
should be encoded as positions of particles.
Similar to previous section, the elements of
matrix B are the desired values to be optimized.
The encoding procedure is as Fig. 1, except that
we should call the encoded vector as position of
the particle, which is shown by x;(k) (the

position of ith particle in kth iteration.

2. Initial population generation: Initial positions
and velocities of the particles are generated
randomly. The population consists of N,

particles.

3. Density form estimation: The position of each
particle can be decoded as a matrix B that can
be used to compute a rough estimate of source
signals using (2). Related to each estimated
signal, the forms of densities of source signals
can be estimated using (6).

4. Fitness evaluation: Using the estimated forms of
densities, the fitness value corresponds to each
particle can be computed by (4).

5. Updating: The positions and velocities of the
particles are updated using following equations

[7]:

vi (k+1) =f (K)v; (k) +a4[gy (P —x; (K))]
+a [0 (G —x; (k)] @

Xj(k+1) =x; (k) +v;(k+1

where:

i: paticle index

k: discrete time index

v;: velocity of ith particle

X;: position of ith particle

pi: best position found by best particle

G: best position found by swarm (global best)
05i.02: random numbers on the interval [0,1]

applied to ithe particle
f : adecreasing linear inertiafunction

aq,a o : acceleration constants

6. Termination: If the number of generation equals



t0 Ngen» Stop the agorithm, elsego to 3.

Finally, the best position of particles (i.e. G) is used asthe
best estimate of matrix B and as a result, the estimate of
source signals can be computed using (2).

V. SIMULATION

In this part the results of computer simulations are
presented. Similar to [2-3], we use sinusoidal wave and a
uniform random signal as sources.

[sin(50t+5)
S(t)‘{ rand (t) } ®)

These signals are mixed using a 2x2 matrix A :
Ao 05 046 g

|08 -06 ®

For the comparison of different algorithms, we use mean
square error (M SE) between source signals and the estimated
signals resulted from algorithms. MSE of error is calculated
using 500 independent trials for al following simulations.

First of al, consider the proposed a gorithm based on GA.
The settings for genetic algorithm are given in table 1. Note
that we try different parameters for genetic algorithm and

finally the best setting (i.e. the setting with minimum MSE)
is used to compare to other approaches.

TABLE1
SETTINGS OF GENETIC ALGORITHM
GA Parameter Value
Selection operator roul ette wheel
one & two point
Crossover operator P
crossover

Crossover rate 0.7,0.75, 0.8, 0.85, 0.9

M utation operator

Gaussian mutation

Mutation scale 0.5
Mutation shrink 0.75
Population size (N pop) 20, 10
Number of Generations (Nge,) 50

The results in the form of MSE are plotted in Fig. 2 and
Fig.3 for sinusoidal and rand sources, respectively. Asit can
be seen in both figures, the greater the cross over rate is, the
larger the MSE becomes. It may because of when the cross
over rate increases, although it is better for global search but
the convergence property of the algorithm degrades. Also as
is expected, the MSE decreases as the population size

(N pop) increases. It is because by increasing the number of
chromosomes (N ), the algorithm will have the

opportunity to search through more probable solutions. Asiit

can be seen, the crossover operator doesn’t play an important
role in the performance of the algorithm. Although the
performance improves for two point crossover with respect
to one point one. We can justify the phenomena by the fact
that using two point crossover, the property of global
searching improves, which resultsin better solutions.

For another comparison, we force Ngg, to be 30 and
compare the results to that of Ngg, =50 for sinusoidal
source. The results are plotted in Fig. 4. As it is expected,
increasing the number of generations, improves the
performance of the algorithm.

Results of MSEs for Sinusoidal source(NGen=50)
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Fig2. MSE for sinusoidal source

Results of MSEs for rand source(NGen=50)
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Results of MSEs for Sinusoidal source
0.03 T T T T T T T

—86— NGen=50,Npop=20,Xover:1 point |
—&— NGen=50,Npop=20,Xover:2 point l

0.025} 1 = El- NGen=30,Npop=20,Xover:1 point |~ ~ 4‘ - "’ - *(*f
NGen=30,Npop=20,Xover:2 point | e “
I I I I I I I 1 |
0.02F - -+ - -+ - —+—-—F-—H4-—d-— o>

| | | | | | sl
| | | | |
| | |

I I

I I

I I

I I
0.82 0.84 0.86 0.88
Crossover Rate

|
|
t
07 072 074 076 0.78 0.8

Figd. Performance comparison for sinusoidal source for two values of
NGen

So, using the results concluded from the plotted figures,
for upcoming comparisons, we select crossover rate, N g,

and Ngg, to be 0.7, 20 and 50, respectively. Also two point

crossover is selected.

As an example, we plot the results for the configuration of
GA algorithm. The source signals are shown in Fig. 5. Also
the observed and separated signals are illustrated in Fig. 6
and 7, respectively. As it can be seen, the proposed
algorithm based on GA shows good performance in
separating the signals.
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Fig. 5: Source signals for GA based algorithm

Observed Signals
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Fig. 6: Observed signals for GA based algorithm

Estimated Signals
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Fig. 7: Separated signals for GA based algorithm

The next proposed algorithm is based on PSO. The
settings for PSO algorithm is givenin table 2.

TABLE2
SETTINGS OF PARTICLE SWARM OPTIMIZATION
PSO Parameter Value
Number of Particles (N ) 10
acceleration constant 1 (a 1) 21
acceleration constant 2 (a5 ) 21
Number of Iterations (Ny; ) 200

As an example of using this algorithm, see Fig. 8 to 10.
The results show good performance for the proposed

algorithm.
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Fig. 8: Source signals for PSO based algorithm
Observed Signals

Fig. 9: Observed signals for PSO based algorithm
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Fig. 10: Separated signals for PSO based algorithm

Finally, the M SE of the proposed a gorithms are compared
to FastICA [1] in table 3. The results of proposed a gorithms

are acceptable to that of FastICA.

TABLE3
COMPARISON OF MSE OF DIFFERENT ALGORTIHMS

sinusoidal source rand source
GA-ML ICA 3.2697e-3 1.8588e-3
PSO-ML ICA 1.6346e-3 9.6123e-4
FastICA 8.2819e-4 4.2375e-4

V1. CONCLUSION

Two algorithms based on genetic algorithm and particle
swarm optimization are proposed to be used for solving
maximum likelihood ICA problem. Results, given in M SE of
estimating signals with respect to source signals, show good
performance of the proposed algorithms. Also a comparison
to traditional FastiCA method was given, which shows
acceptable performance of the algorithms.
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