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Abstract—The proper performance of a computerized ECG
analysis is highly dependent on the accuracy of the extracted
fiducial points. The aim of this paper is to develop an ECG
analysis algorithm which analyzes all 12 lead ECG signals
simultaneously and determines global durations and intervals
including P duration, PQ interval, QRS duration, and QT inter-
val. The basic concepts of this algorithm is based on the method
previously introduced for automatic detection of wave boundaries
based on the slope and adaptive thresholding. The method of
identification of QRS complex type, QRS classification, and
threshold determination were significantly modified considering
the morphological features of each signal. These modifications led
to less computational complexity for implementing on Electrocar-
diography system and high accuracy to be adaptable with medical
standard requirements. On the other hand a novel algorithm for
calculating the heart axis have been presented; performing based
on combination of limb leads, this algorithm greatly reduces error
rate in heart axis determination. For performance evaluation,
both ECG data collected in Rajaie cardiovascular center and the
CSE database are used. Mean difference and standard deviation
of measurement results in millisecond unit estimated by proposed
method vs CSE reference values are 0.7 and 3.70 for P duration,
1.40 and 3.52 for PQ interval, -1.10 and 3.04 for QRS duration,
and 4.09 and 5.61 for QT interval.

I. INTRODUCTION

ECG signal is one of the major physiological signals gen-
erated from heart’s rhythmic polarization and depolarization.
This signal is characterized by a number of waves as P,
QRS, and T related to the heart activity. These parameters are
useful characters for physicians in the heart disease diagnostic
process. Modern digital electrocardiographs are capable of
simultaneous 12-lead signal acquisition providing computer-
based analysis of ECG waveforms which have reported global
duration and intervals such as P and QRS durations, PR and
PQ intervals, and heart axis [1].

Different methods for ECG wave’s boundaries detection
have been proposed in the literature, such as differentiated
low-pass filtering [2], mathematical transforms [3], adaptive
filters [4], classification methods (neural network, fuzzy algo-
rithm) [5], and a combination of hidden Markov model and
wavelet [6].

In this study, our aim is developing an ECG analysis
algorithm which performs based on simultaneous 12 lead ECG

signal and determines the global duration, intervals, and axis
with high precision. We use similar idea presented in [2] for
automatic detection of wave boundaries which is based on the
slope feature and adaptive thresholding. The way of identifying
the type of QRS complex, QRS classification, and determin-
ing the thresholds significantly modified by considering the
morphological features of each signal. These modifications
led to less computational complexity for implementing on
Electrocardiograph device and high precision to meet medical
standard requirements. On the other hand a novel algorithm
for calculating the heart axis have been proposed. Performing
based on combination of four limb leads signal (I, II, III and
aVF), this algorithm greatly reduces error rate in heart axis
determination.

II. PROPOSED METHOD

Measurement algorithm is based on analyzing 10-second
12 leads ECG signal. To remove different artifacts and improve
the quality of signal, a 50 or 60 Hz notch filter to eliminate any
AC interface and a linear second order band-pass filter, known
as Lynn filter [7] with the frequency band of 0.8-18 Hz, have
been applied to the input signal. The next step of measurement
algorithm is R wave detection, which is necessary to beat seg-
mentation. In this paper, R wave detection was accomplished
based on well-known Pan-Tompkins algorithm [8] and applied
on the signal of lead II; then the accurate location of R peaks
on other leads was determined based on windowing technique
around the approximated point called PKi.

A. QRS complex boundary detection

According to the peak point detected as a R wave, each
beat has been segmented and analyzed to estimate the onset
and offset points of QRS complex and its amplitude. Extracting
main features of QRS complex including QRS duration, R−R
interval and R wave peak to peak amplitude is the next step;
it identifies the class to which each complex belongs.

The positive and negative slopes before and after PKi

provide basic information about the onset and offset points
of QRS complex. The nearest local extremum points in the
original signal before and after the upward and downward
going sides of the PKi peak have been detected. The first
points backward and forward these peaks in the differentiated
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Fig. 1. General block diagram of measurement algorithm.

signal crossing the determined threshold and having slope
values with opposite signs compared with the positive and
negative slopes around PKi, are approximated points for QRS
complex onset and offset, respectively. Thresholds used in this
step, are determined based on maximum and minimum slope
values around the PKi and some constant values according
to presence of each wave (Q or S wave). In rest of the paper,
Imax and Imin represent the maximum and minimum slope
values.

B. QRS classification and type definition

In this stage a feature-based decision rule gives the beat to
be processed. This classification logic has to allow for a single
normally conducted beat. It decides based on the following
features: QRS complex peak to peak amplitude, QRS duration
and RR interval to exclude the extrasystoles. The aim is to
choose one beat of a similar morphology as being conducted in
the normal sequence through the ventricular. The classification
method used here, is similar to the method used in Kenz
electrocardiograph system [9]. Three classes are considered
in order to beat classification including ”0” type as a normal
beat, ”1” type as a normal beat with the shorten R−R interval
which has laid before the abnormal beat, and ”2” type as
an abnormal ECG beat. After beat classification, only one
beat would be selected as the primary beat to be analyzed
according to dominant method as mentioned in the following.
In presence of abnormal beats, ECG beat with longest R-R
interval extracted from ”0” type of QRS complexes, must be
chosen as the primary beat. If type ”2” of QRS complex
is present, ECG beats before and after the ”2” type QRS
complexes are exempted from the object ECG wave. If ”0”
type of QRS complex is absent, ECG beat of type ”1” with

longest R−R interval must be extracted as the primary beat to
avoid PVCs to be selected as a primary beat. In presence of
normal rhythm, if all QRS complexes are considered as ”0”
type, the 3rd beat must be chosen as the primary beat.

Generally 6 different types have been considered for QRS
complex. These are including RSR’, QR, QRS, RS, R and
QS types which was shown in Figure 2. Given these various
types had a significant influence on accuracy of final detection
results. Identifying the type of QRS complex is done according
to the initial estimation of peak points on this complex known
as PKi; these points are the candidates of Q, R, S and R’
waves according to their amplitude and upward or downward
slopes. There are two general morphology classes according
to the sign of PKi: In each class, the nearest local maximum
before and after PKi must be investigated to detect the other
waves including Q, S and R’. In the algorithm 1, the method
of type identification for RSR’ and rSr’ morphologies are
explained as an instance.

According to the Figure 3, if the above conditions are
correct just for the previous max, then the complex type
would be RS; if they are correct just for the next max, the
complex type would be QR and if they are correct for both
of these points, it would imply the presence of rSr’ complex;
eventually if these conditions are not applicable for none of
these points, it would imply the presence of QS complex.
Based on mentioned conditions, the accurate location of R,
S and R’ or r, S and r’ have been detected and used to find
the onset and offset points of QRS complex.
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Algorithm 1 RSR’ and rSr’ type identification
Input: QRS complex and PKi

Output: accurate position of Q, R, and S wave.
1: Find the nearest local maximum before and after PKi

2: if PKi > 0 (according to Figure 3(a)) then
3: if T1 < 80 ms then
4: if A1 > A2/4 then
5: if Slope in point 2 > 1/15 Slope in point 1 then
6: if Amplitude in point 3 < 0 then
7: return RSR’ type
8: end if
9: end if

10: end if
11: end if
12: else
13: if PKi < 0 (according to Figure 3(b)) then
14: if Amplitud of local maximum > Baseline then
15: if Slope in point 2 > 1/15 Slope in point 1 then
16: if Slope in point 4 > 1/15 Slope in point 3 then
17: if T1 < 75 ms and T2 < 75 ms then
18: return rSr’ type
19: end if
20: end if
21: end if
22: end if
23: end if
24: end if

C. Wave boundary detection

After type declaration of QRS complex, the onset and
offset points of each wave has determined within the windows
locating according to the R wave. The method of boundary
detection for each wave is described in the following.

1) QRS complex: A window with the width of 40 ms start-
ing from Imax, backwards to P wave, has been located; based
on the minimum and maximum value within this interval,
the presence or absence of Q wave has been determined; the
threshold value, THq , has defined by dividing the value of
differentiated signal in this point to a constant value; if there
is a Q wave, the constant of Kq and otherwise, the constant
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Fig. 3. QRS complex morphology in presence of (a) RSR’ and (b) rSr’.

of Kr has been used to threshold selection for QRS onset
determination.

This process has been done for QRS offset determination
using a window with the width of 60 ms starting from Imin
towards T wave; constant value used in threshold selection
takes the value Ks, if S wave is present and Kr if S wave is
not present.

2) P wave: P wave analysis has been done within the
interval preceding the QRS complex. Considering the onset
of QRS complex, a window starting from 260 ms and ending
at 30 ms before the Q wave has been used. The minimum and
maximum values on the derivative signal are searched in this
window; according to the amplitude of these points, the length
of this window would be changed; this moving window has
decreased the number of P waves falsely detected in the case
of large PR intervals. The baseline level of signal is calculated
based on average value of signal within the limit of P wave
offset and QRS onset and P wave amplitude is determined
relative to this level.

Considering P wave morphology, the threshold value for
determination the fiducial limits of P wave, is calculated; for
the positive slope located before (after) the negative slope, we
consider upward-downward (downward-upward) shape for P
wave; in each case the minimum and maximum slopes dividing
to a constant values have been determined the threshold
value. The offset point of P wave, P2, has been defined as
a backward point from the QRS onset where the processed
signal reaches to the threshold THpe = f(imax)/Kpe and the



onset point, P1, has been defined as a backward point from P2

where the processed signal reaches to the threshold THpb =
f(imin)/Kpb. Kpb and Kpe are experimental and have their
best performance for 1.35 and 2 respectively. According to
the P wave morphology, the minimum or maximum point has
been detected within the limit of P1 and P2 and marked as a P
wave Peak Pp; to decrease the false positive errors caused by
noise, the amplitude and duration of P wave is compared with
acceptable limits (amplitude of P wave is measured related
to the signal’s noise level); if these parameters are in normal
range, there is a definite P wave with determined fiducial
points, otherwise there is no P wave in selected beat.

3) T wave: T wave boundaries have searched in a window
starting from 50 ms and ending at 0.6

√
R−R after the R

wave. This is an adaptive windowing which its length has
modified according to the slope of signal at the ending 30% of
window; in this part of window having a couple of maximum
and minimum point on the derivative signal with comparable
slope to their corresponding values in the beginning 70%
of this window, indicates that P wave is located very close
to T wave; therefore, the length of search window must be
decreased. Shrinking the length of window occurred in gradual
steps to decrease the probability of error and it would be more
advantageous to avoid the next P wave being detected as a
false T wave.

In this study the minimum length of this window is
considered as 0.4(R − R), which is based on the borderline
value for QTc (QTc ≥ 440ms) [10] and Bazett’s formula
(QTc = QT/

√
R−R).

In order to compare the maximum points located at the
ending 30% of window with corresponding values in the
beginning 70% of this window, Ktp constant value equal to
1.75 has been used. The method of finding onset and offset
points of T wave is similar to what is used about P wave;
this is according to thresholds defining based on minimum
and maximum slope values in the specified window. The peak
point of T wave is also determined by finding the zero crossing
point in the derivative signal located within the limit of T wave
onset and offset.

D. Multi Lead selection algorithm

Physiologically, the global durations of P, QRS and T
waves are defined by the earliest onset in one lead and the
latest offset in any other lead; indeed wave onset and offset do
not necessarily appear at the same time in all leads, because the
activation propagate differently [11]. Considering this issue,
we used a Multi-lead algorithm to select the final value of
parameters; this method will reduce the influence of possible
noisy measurements. The post-processing rules for fiducial
point detection consist of ordering the preliminary results and
selecting the onset (offset) point of each wave as first (last)
points which k nearest neighbors lay within an (δ)ms interval.
The value of δ has selected empirically and is based on usual
variability in manual annotations [12]. This is considered as
δ = 6ms for P and QRS onset and P offset, δ = 10ms for
QRS offset and δ = 12ms for T offset [13]. Applying this
method, a single missing lead would not necessarily cause of
rejecting the whole 12 ECG lead.

(a) (b)

Fig. 4. (a) Normal and abnormal limits for QRS axis [18], (b) An example
of iso-electric method for heart axis calculation.

E. Heart axis calculation

Heart axis calculation are one of the most important part
of the computerized electrocardiography system. In clinical
applications, these parameters provide helpful information for
medical diagnosis [14]. Figure 4(a) shows the normal and
abnormal limits for QRS axis. The electrical axis of the heart
is the mean direction of action potentials traveling through the
ventricles during ventricular activation (depolarization). The
QRS complex which represents ventricular depolarization is
more common to determine the frontal electrical heart axis.

Any combination of 2 limb leads can be used to calculate
the QRS frontal axis[15]. Some of well-known equations to
calculate QRS axis are introduced in Table I [16], [17]. In this
equations ”I” is net voltage of QRS wave in lead I and so
on. Using lead having maximum net amplitude, leads to more
accurate result.

A common method among physicians for heart axis de-
termination is iso-electric method. Iso-electric lead contains
biphasic waves with approximately zero net amplitude which
the QRS axis is perpendicular to its orientation Figure 4(b). In
proposed method, we have used optimized combination of 2
leads with highest amplitudes to achieve more accurate result.
By choosing 2 leads with maximum net amplitudes, the QRS
axis would be calculated according to the equations defined in
Table I.

TABLE I. DEFINED EQUATIONS FOR HEART AXIS CALCULATION
BASED ON SELECTED LEADS.

Selected Leads Equation

I and aVF α = tan−1(2aV F/
√
3I)

I and II α = tan−1((2II − I)/
√
3I)

I and III α = tan−1((I + 2III)/
√
3I)

II and III α = tan−1((II + III)/
√
3(II − III))

III. RESULTS

The proposed method has been implemented in Visual
Studio C++ 2010. We consider two databases for performance
evaluation of this method, CSE Multi-lead database and ECG
data collected in Rajaie cardiovascular, medical and research



center (RCMRC); CSE (Common Standard for Quantitative
Electrocardiography) is a reference database are being used by
more than 110 academic and industry research centers in order
to assess and improve ECG measurement and interpretation
programs. The quality assurance rules promoted by CTS-ECG
are now part of IEC 60601-2-25 standard [11]. This database
contains 125 records each of them lasting 10 seconds with the
sampling frequency of 500 Hz [19].

Using the proposed method, the duration, intervals and
heart axis of ECG signals have been calculated for both CSE
database and collected dataset. Deviation of these measure-
ments from the mean referee estimates of CSE database and
RCMRC physician’s annotations are presented in Table II and
III; the acceptable limits for these parameters recommended in
Table 201.105 of IEC-60601-2-25 standard [11] are mentioned
in these tables. For detailed analysis of the results, the boxplot
of these deviations for all records are shown in Figure 5.
According to these plots, the concentration of measurement
errors have laid in the acceptable limits mentioned in standard.
In addition, they indicate that the proposed algorithm has the
uniform performance in measuring different parameters. Figure
6, also shows the typical results of the algorithms for different
ECG signals.

In order to investigate the validity of measurement results,
we have compared the proposed algorithm to the ecgpuwave
algorithm which is a well-known approach of fiducial points
extraction. The results of this comparison are provided in Table
II which show a significant improvement in ECG wave bound-
aries detection using the proposed method. Using adaptive
windowing and considering the morphology of each wave,
lead to more enhanced results in comparison to ecgpuwave
approach.

Another point of interest is to investigate the performance
of proposed algorithm in presence of noisy signals specially
EMG noise. The results shows that the algorithm is largely
robust against the noise; on the other hand, we previously
developed a dynamic Gaussian filter [20] which suppresses the
noise significantly and enhances the results of wave boundaries
detection. Table IV shows the improvement of detection results
after applying EMG filter as a preprocessing step on the input
signals especially in the case of P and T wave duration.

Table V depicts the mean and standard deviation of the
difference between calculated axis by proposed method and
physician annotations for P, QRS, and T axis. Comparing
the results of heart axis calculation to physician’s annotations
indicates the acceptable performance of proposed algorithm.

IV. CONCLUSION

In this paper, we proposed an efficient algorithm to auto-
matic measurement of duration, intervals and axis in 12 lead
ECG signal. Using the adaptive thresholds and moving win-
dows according to the morphologic features of the signal have
profoundly improved the performance of proposed algorithm.
Additionally, using the slope feature to extract the fiducial
points, make this method less complex and simple to imple-
ment which is required for real-time industrial applications.
In the future study, we are going to use these measurement
results for automatic ECG signal interpretation.

Although the proposed algorithm has a great potential in
measuring the major parameters for variety of ECG morpholo-
gies, the presence of unpredictable morphologies in clinical
conditions may lead to partially unreliable results; therefore,
for diagnostic applications there is a need for evaluation with
more clinically recorded signals.

TABLE II. THE RESULT OF ECGPUWAVE VS PROPOSED METHOD ON
CSE DATABASE.

Mean Difference (ms) Standard Deviation

Standard ECG-
puwave

Proposed
method Standard ECG-

puwave
Proposed
method

P Duration ±10 7.35 0.70 15 10.27 3.70

QRS Duration ±10 7.77 1.40 10 14.51 3.52

PQ Interval ±10 2.5 -1.1 10 10.73 3.04

QT Interval ±25 -7.57 4.09 30 35.29 5.61

TABLE III. MEAN DIFFERENCE AND STANDARD DEVIATION FOR
GLOBAL DURATION AND INTERVALS ON COLLECTED DATASET IN RCMRC.

Mean Difference (ms) Standard Deviation

Standard Proposed method Standard Proposed method

P Duration ±10 2.23 15 4.65

QRS Duration ±10 3.08 10 4.23

PQ Interval ±10 1.48 10 4.42

QT Interval ±25 7.19 30 8.79

TABLE IV. MEAN DIFFERENCE AND STANDARD DEVIATION FOR
GLOBAL DURATION AND INTERVALS ON CSE DATABASE WITH AND

WITHOUT APPLYING EMG FILTER.

Mean Difference (ms) Standard Deviation

Standard Proposed
method

Apply
EMG Filter Standard Proposed

method
Apply

EMG Filter

P Duration ±10 0.70 0.61 15 3.70 3.56

QRS Duration ±10 1.40 1.43 10 3.52 2.89

PQ Interval ±10 -1.10 -0.94 10 3.04 2.78

QT Interval ±25 4.09 3.94 30 5.61 5.23

TABLE V. MEAN DIFFERENCE AND STANDARD DEVIATION FOR P,
QRS, AND T AXIS ON CSE DATABASE AND COLLECTED DATASET IN

RCMRC

Mean Difference (in degree) Standard Deviation

P axis QRS axis T axis axis QRS axis T axis

CSE DB 2.99 0.59 1.05 21.54 15.44 19.18

RCMRC DB 3.54 2.65 -2.86 23.15 17.63 16.53
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