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Abstract— Abstract—Evaluation of availability of systems is an 

important issue in many applications. One way to estimate the 

availability of dynamic systems is using their dynamic fault tree 

(DFT) model. Markov model is a method to solve the dynamic 

fault trees. However by increasing the tree size, the number of 

Markov states of is increased exponentially. This is why which 

cases, the solving of model complicated. The use of hierarchical 

methods is a technique to solve such this problem. This paper 

presents that and approach to address problem. Many published 

papers have used the Mont-Carlo approach for finding the 

availability of system from their DFT model. This paper uses the 

equal Markov model of DFT to estimate the system availability. 

First the equal Markov model is introduced, and the equal 

Markov model of existing dynamic gates will be constructed from 

their conventional Markov model. The equal Markov model of 

two systems is then constructed and their availability is 

computed. The results are them compared with those obtained 

from conventional Markov models to verify the correctness of 

our approach.  

Keywords- dynamical fault tree, Markov model, availability, equal 

failure rate, and equal repair rate.    

I. INTRODUCTION  

A. A review of evaluation methods: 

     One of the important issues in industry is evaluation of the 
availability of systems. Availability is the probability that a 
system performans its function correctly at any instance of 
time. It is in fact a nonstop operation index of a system. The 
use of self repair components, self diagnoses mechanisms, and 
online and offline repairs are mechanisms to improve a system 
availability. In the last three decades, a number of approaches 
including DFT, Mont-Carlo, Markov modeling and hybrid 
techniques have been used to calculate system’s availability 
[1]. 

     For constructing a dynamic fault tree, it is necessary fully to 

understand the topology of the system, and failure modes of its 

components [2-3]. In addition, the size of tree system is 

exponentially increased with increasing the number of 

components and subsystems. Fault tree is a graphical model 

that can be achieved to evaluate the system performance by 

accessing the failure paths [4].It is also divided into two 

categories, dynamic and static. A static fault tree can only 

model systems in which the relation between system 

components can be expressed by means of AND & OR gates. 

A dynamic fault tree, on the other hand, models many  

dynamic aspects and attributes of systems like priority, 

dependency, sequence, time, and reconfiguration by means of 

dynamics gates introduce in the last decade, (including PAND, 

Spare, FDEP, and etc) [5-7]. 

     Research efforts have been looking for automated tools [8-

11], able: to convert a given DFT into state-space models, to 

apply techniques to improve computational performance, to 

avoid the state-space explosion, like Stochastic Process 

Algebra, lumping or aggregation [12] or using local 

explorations of the state graph via sequences [13]. In [14], DFT 

has been solved via its conversion to a Bayesian network. This 

method mitigates the state space explosion, but like direct 

acyclic graph, the Bayesian network cannot model cyclic 

dependencies, so restoration is not allowed. Other approaches 

have used stochastic Petri nets as target formalism for solving 

DFTs [15]. 

     The DFT formalism introduced in [16]; derives from a DFT 

model, its equivalent state space model in the form of 

continuous time Markov chain [17-18]. The state space 

analysis incorporates high computational costs. For this reason, 

a modular approach to analyze DFTs is proposed in [19]. 

     Writer in [20] presented a transformation of DFTs to 

Stochastic Petri Nets [21], which were in turn analyzed by 

conversion to Markov Chains. Although this method was 

suffering from a combinatorial explosion when constructing 

the Markov Chain, the Petri Nets are much smaller and easier 

to understand and extend. 

     Reference [22] was introduced a software tool to analyze 

the reliability and availability of DFT by the use of I/O IMC 

methodology.  
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     Monte Carlo does not require knowledge about the internal 

structure of system [23], it does not provide a closed formula 

for system reliability. However, due to its simplicity, many 

researchers in the field of power and communication sector 

have been used this methodology for finding the point 

reliability of systems. [24]   

     The Markov model is another approach to evaluate the 

reliability and availability of systems. Various extension of this 

state space based modeling approach like Semi Markov, hidden 

Markov, reward Markov have been proposed for basic Markov 

theory [24]. This approach has been widely used for the 

evaluation of the reliability, availability, sensitivity, safety, and 

perform ability of industrial systems, see for example [1, 2, 5, 

17, 24_26]. In the past decades considerable advances, have 

been made in the hierarchical solution techniques methods of 

automated model generation, and the availability of software 

tools. A Markov chain consists of a set of states and a set of 

transitions between the states. A state can model various 

condition of interest in the system being studied. This could be 

the number of jobs of various types waiting to use which 

resource the number of modules, that have failed, the number 

of modules perform correctly and so on. After a sojourn in a 

state, the Markov model will make a transition to another state. 

Such transitions are labeled either with probabilities of 

transition or rates of transition. If the Markov model has 

appropriate structure, it is often possible to avoid the 

generation and solution of the underlying large state space 

(explosion). 

     One way to solve the problem of state explosion in large 

Markov models is the use of hierarchical approach [2]. This 

reference introduces a “reward Markov model”. In which, 

when the state is active, the reward rate is set to zero, and when 

the state is failed, the reward rate is set to one. Thus a given 

Markov model can be converted to a two states model, with 

two transition between the states [2]. One of transitions is 

assigned to “an equal failure rate” and the other is assigned to 

“an equal repair rate”.  

B. Problem Stating 

     As stated in previous section (A), one of the widely, used 

methods, for availability evaluation of systems is DFT 

approach. The Markov model is usually used for solving DFT 

modules. The introduced approaches in the literature have been 

faced with Markov models with a large number of states 

specially in the case of modeling large systems. 

     This paper proposes a hierarchical method to solve this 

problem. Our methodology converts the Markov model of each 

dynamic gate in to a simple two state Markov model. In this 

way the size of original Markov model is dramatically 

decreased. This, in turn, simplifies the computation and 

decreases the evaluation phase.  

     This paper is organized as follows: after this introduction, 

Section II proposes the method of obtaining equal failure and 

repair rates of dynamic fault tree by using Markov model, and 

then the method for calculation of steady state availability is 

presented. In Section III, we introduce some dynamic gates 

with equal Markov model.  In section IV, the effectiveness of 

the proposed method is illustrated through examples. Finally, a 

short conclusion is given in last section. 
 

II. EVALUATION OF STEADY STATE AVAILABILITY OF 

DYNAMIC FAULT TREE BY 

A.  Equal Markov Model 

     Generally, a given fault tree can be easily concerted to its 

equivalent Markov model by replacing each gate with its 

Markov model based on the tree topology. In the next section 

we will show that the Markov model of each gate (of tree) can 

be reduced to a two states model shown in Figure 1.  

 

 

 
Figure 1.  Equal markov model 

 

To obtain the equal rates, the following method is used [2]: 
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In the above equations, we have: 

 

UP : is steady state probability for k mode.  

S: set of all states. 

iS : state i. 

U: set of active mode. 

jit , : transition from state i to j. 

jiq , : element of the infinitesimal generator matrix of Q which 

it is a diagonal matrix. 
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where: 

G: set of transition from failure modes to active modes. 

D: set of failure mode.  

ir : reward rate of state i.  

 

      If the state is active, so reward rate is zero, else it is unit. 

Since the difference between reward rates in equations 1 and 4 

is unit, they do not influence, so are neglected. 

      Thus, according to the said method, firstly Markov model 

is simplified then steady state availability is achieved. So, in 

the next section, we briefly review the methods to calculate 

the steady state availability.     

 

B. Evaluate of steady state availability of systems   

      In this section, the method for evaluation of steady state 

availability is accessed.  After drawing a Markov model, the 

state transitions matrix to obtain, so we write the following 

equation: 
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where ni ,...,1  and n  is the states numbers, )(tPi is the 

failure probability for state i . 

Also, we know the probability in the steady state is zero e.: 
 

niPi ,...,1,0)(                                                                  (6) 

 

We know the sum of the probabilities is unit, so: 

  

  1)(...)(1  nPP                                                         (7)  

                                                     

    By using the equations (5)-(7), availability can be written as 

the following equation:  
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      In the next section we introduce the dynamic gates. 

 

III. THE INTRODUCTION OF TWO DYNAMIC GATES AND 

THEIR MARKOV MODEL 

      In this section, we introduce of PAND and Spare gate and 

then access Markov model. 

 

A. PAND Gate 

    The structure of PAND is shown in Figure 2. 

 

 
Figure 2.  PAND dynamic gates 

      PAND is a Priority AND gate. In this gate, the first input 

has priority to the others. In fact, if the primary module is 

failed, the gate is failed; else the system can be operated.  

To learn how to calculate availability of this gate, a gate with 

two inputs is considered. The first input has propriety to  the 

second one. Markov model of the gate is given in Figure 3: 

 

 
Figure 3.  Markov model of PAND dynamic gates and its equal Markov 

Model 

Therefore, the availability of the gate PAND is as (9): 
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B.  Spare gate 

The structure of this gate is shown in Figure 4: 

 

 
 

Figure 4.  SP dynamic gates 

     The Gate has a primary input, and n spare inputs. When the 

primary input is failed, spares inputs are replaced. Spares 

operates in cold, warm, or hot inputs 

     To learn how to calculate availability of spare gate, we 

consider a gate with two inputs. First input is active, and if it 

fails, the second input is replaced. The Markov model of this 

gate is shown in Figure 5. 

 



 
 

Figure 5.  Markov model of SP dynamic gates and its Equal 

     

    According to the method mentioned in the previous section 

for availability evaluation, system availability is calculated as 

follows: 
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IV. USING THE TEMPLATE EXAMPLES OF DYNAMIC 

FAULT TREE  

     A couple of examples are demonstrated in the next section 

to show the effectiveness of our methods. 

 

A. PAND gate supported by a cold spare 

     The first example is tree with two dynamic gates and tree 

basic events (Figure 6). 

 

 
Figure 6.  PAND gate supported by cold spare 

    To solve this tree, the following assumptions are made: 

 

1. All components perform correctly. 

2. The failure rate of each component obeys exponential 

distribution function. 

3. At any time, only one component fails. 

4. The switching mechanism of spare gate is ideal. 

5. Repair is possible. 

      The original Markov model of this tree is shown in Figure 

7. When it is solved the availability is obtained as follows 

(11). 

  

 
Figure 7.  Markov model of PAND gate supported by cold spare 
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     The equal Markov model of cold spare gate has already 

been shown in Figure 8. For which eqeq  ,  can be obtained 

from equations 1 to 4, as follows 
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    According to our methodology simplified Markov model is 

shown in Figure 8. 



              

 
Figure 8.  Fig. 8. Simplified Markov model 

 

     We now solved numerically the original tree and simplified 

tree to show correctness our methodology. Assumed that: 

 

006.0,5.0  AA   

007.0,7.0  BB   

008.0,8.0  CC   

009.0,9.0  CC   

 
 

     According to Figure 8, equal failure rate and equal repair 

rate are obtained as follows: 

 

007.0,691.0  eqeq   

 

 

      After calculating the equal model of this tree, simplified 

model is obtained directly. 

The diagram of comparing steady state availability of system 

by using main Markov model and proposed our method is 

shown in Figure 9. 

 

 
Figure 9.  Compare PAND gate availability support with cold spare using the 

original model and our proposed method 

 

     According to the results of availability in Figure 9, we 

observe our method has a good approximation. 

 

 

 
 

Figure 10.  Fault tree of cardiac assistant device [27]. 

 

B. Cardiac assistant device 

     This device is design for the treatment of mechanical and 

electrical heart faults. Figure 10 shows the fault trees diagram 

of this system. The system consists of four modules: Trigger, 

CPU unit, motor section, and pumps. Trigger section conclude 

of a switch (CS) and a monitoring system (SS). CS failure or 

SS failure cause the failure of two processors. CPU unit is 

warm spare that includes a basic unit (P) and a spare that have 

a rate is equal 0.5. For motor section, one of the MOTOR or 

MOTORC must perform. The pumps are composed of two 

cold spare units; each consists of a main pump and a spare 

pump. For failure of pumps, all of the pumps must be failed 

and also, before fail of CSP2, CSP1 must be failed. The 

following table shows the values of failure and repair rates 

[27]. 

 

TABLE I.  PARAMETERS OF CARDIAC ASSISTANT DEVICE 

Failure Rate (10e-6) Basic Component 

1 

2 

4 

5 

5 
1 

CS 

SS 

P, B 

P1,P2, BP 

MOTOR 
MORORC 

 

 

The equal Markov model of PAND gate has already been 

shown in Figure 11.  



 

 
 

Figure 11.  Markov model of the PAND gates in pumps section 

11 , eqeq   can be obtained from equations 1 to 4: 
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      Now the motor section consist of a gate AND, and a 

motor. The failure rate and repair rate are calculated. Because 

the function of CPU depends to trigger module, so we use 

same Markov model for analyzing (Figure 12). 

 

 

 
 

Figure 12.  Fault tree of trigger and CPU section 

 

 
Figure 13.  Equal markov model of the PAND gates in pumps section 

Equal repair rates are calculated: 

 

0064.82  eeq                                                                  (16) 

0077.132  eCBAeq                                      (17) 

                                  

      After calculating all the sub sections of the model, the 

availability of the results of the previous system is obtained 

with OR of all previous sections (Figure 14). 

 

 
 

Figure 14.  Final Markov model 

So, availability is: 
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      By comparing the original model and the availability of 

simplified our method in Figure 15, we can see the 

effectiveness of the method. 

 



 
Figure 15.  Compare cardiac assistant device the original model and our 

proposed method 

 

V. CONCLUSION 

     This paper introduced a methodology for solving easily 

DFTs by the use of idea taken from reference [2]. Our purpose 

in this paper is the evaluation of availability. The Markov 

model of a given DFT is converted to a simplified model by 

replacing its constituent gate (Markov) models with their 

equal Markov models. In this way, the size of original model 

was decreased. We showed the correctness of our 

methodology with two examples. 
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