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Abstract—Brain  Computer Interface (BCIl) provides a
communication channel via computer between the mind and
environment. Extracting suitable and discriminant features is one
of the most important stages in BCI Applications. Common
spatial pattern (CSP) is a well-known feature extraction method;
however, due to the non-stationary nature of EEG signals CSP
should be updated through the time.

This paper proposes a novel adaptation method using
extended Kalman filter (EKF) for CSP feature elicitation and
classification for BCI systems. In this method, EKF updates CSP
filters in both supervised and unsupervised schemes. The
proposed method was applied to data of BCI competition-111
containing two- and multi-task imagery movements. Results
demonstrate a considerable improvement in terms of
classification accuracy by the proposed method in comparison
with standard CSP method.

Keywords-brain computer interface; common spatial patterns;
extended Kalman filter; adaptation; supervised; unsupervised

l. INTRODUCTION

A brain computer interface (BCI) is a system which allows
an individual to communicate with outside world by
translating his brain signal changes [1]. These changes
(patterns) can be emerged by performing specific real or
imagery movements or different cognitive activities. Each of
these patterns can be detected and translated to a specific
action by a trained classifier program in the computer [1]. The
main challenging problem in BCI is to extract and classify
these patterns, especially while using non-invasive signal
acquisition methods such as electroencephalogram (EEG).
EEG signals are filtered by soft and hard tissues of the head
while passing from the source to scalp. This causes to distort
temporal and local information of the brain signals.
Furthermore, in EEG recording process each electrode records
a combination of signals from several sources. To overcome
these drawbacks, some approaches assume that brain source
signals distort only spatially while passing through different
layers of brain and scalp [2]. Common spatial patterns (CSP)
is one the most popular methods which uses this assumption.
CSP is a method to extract the uncorrelated components from
multi-channel data [3][4]. The output of this method is a set of
spatial filters which can discriminate two classes of data by
extracting components of maximum variance (energy) for one
class and minimum variance for the others [2][5].

EEG signals have a non-stationary nature due to several
factors such as changing in the firing patterns of neurons
through the time, changes in condition of recording
environment, unsteady electrode impedance during recording,
fatigue and etc. These non-stationery conditions make
adaptation essential for feature extraction and classification in
EEG based BCI systems [1].

Kalman filter is known as one of the greatest data fusion
algorithms. This is the optimal estimator for one dimensional
linear system with Gaussian error statistics. Kalman filter can
be used for smoothing noisy data and providing estimations of
parameters of interest, such as states of a dynamic system.
Small computational requirements and perfect recursive
properties make this filter one of the most favorite estimators
[6]. Kalman filter estimates system states by combining noisy
measurements with predictions of interested parameters. These
predictions are based on the system dynamic model and the
last state of the parameters. In the original Kalman filter,
dynamic and observation models should necessarily be linear,
while in its extended version, one of these models or both of
them can be nonlinear [7]. In this study, CSP filter elements
were considered as system parameters and were adapted using
an extended Kalman filter (EKF).

Lowne et al. [8] proposed an adaptive logistic classifier for
BCIl experiments which used features from a nonlinear
mapping. The adaptation algorithm was implemented using an
EKF. Tsui et al. [1][9] used this idea to adapt a linear
discriminant analysis (LDA) classifier with logarithmic band
power features for BCI applications. In this work, the same
idea was used to update CSP filters which were trained for
feature extraction and classification. In the classification step
as a new EEG test trial arrives, an adaptation algorithm based
on EKF runs. This adaptation algorithm is executed in both
supervised and unsupervised manners, where the label of
incoming data is used and not used in the training,
respectively. The proposed method was investigated by
applying it to dataset 'a’ from BCIl competition-IlI.
Classification was done for two-task and multi-task scenarios.

In the next Section the employed dataset is introduced. In
Section 111 the theoretical details behind the proposed method
and in Section 1V, results of different tests are presented. The
outcomes of these results are discussed in Section V and are
followed with some concluding comments in Section VI.
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Figure 1 a. Position of EEG electrodes, b. Timing of the paradigm.

Il. DATASET

In this study, dataset 'a' from BCI competition-111 was used
[10]. This is a cued motor imagery, multi-task dataset,
provided by  the Laboratory  of Brain-Computer
Interfaces (BCI-Lab), Graz University of Technology. The
dataset consists of 4 classes (left hand, right hand, foot, and
tongue) from 3 subjects (ranging from quite good to fair
performance). 60 EEG channels (according to the scheme in
Fig.1a) and 60 trials per class (task) were recorded. The EEG
was sampled with 250 Hz and was filtered between 1 and
50Hz and also a Notch filter was applied to eliminate the
electric city. The data of all runs was concatenated.

The paradigm of recording was to perform imagery
movements according to a cue. The order of cues
corresponding to each movement was random. After each trial
begun, the first 2s were quite, at t=2s an acoustic stimulus
indicated the beginning of the trial, and a cross “+” is
displayed; then from t=3s an arrow to the left, right, up or
down was displayed for 1 s; at the same time the subject was
asked to imagine a left hand, right hand, tongue or foot
movement, respectively, until the cross disappeared at t=7s
(Fig.1b).

The analysis was done on 5 Laplacian derivation channels
named as LC,, LC,, LC,, LC, and LC, where

LC, :Cg—%(FC3+CP3+C5+C1) )
LC, :Cl—%(FC1+CP1+C3+CZ) @)
LC, =C, —%(FCZ +CP, +C, +C,) (3)
LC, =C2—%(FC2+CP2+CZ +C,) 4)
LC, :CA—%(FC4+CP4+C2+C6) )
and C, =ch,,, C, =ch,, C, :%(ch29 +ch,,), CP, =ch,,,

FC, =ch,, FC, =ch, , FC, =ch,, ,

z

1
C, :E(Ch32 +chy,) ,

1 1
FC, :E(Chlg tchy) . FC, :E(Chzz +Chy) . CPy=chy ,

CP, =ch,,, CP, =%(ch39 +ch,,) ,CP, :%(ch42 +chy,) .

'ChXy ' stands for BCI recording channels (Fig.1b). The

Laplacian derivation was chosen, because it showed better
results. Also the analysis was done on data from 3.5 to 7
seconds, which is the respond period to the cues (for subject 2
and class 1 analysis was done on data from 3.5 to 6.6
seconds). Data was subsequently band pass filtered between 8
to 30 Hz by a Butterworth filter of order 4.

I1l.  METHODS

A. Common Spatial Patterns [5]
In the following, EEG signal trials corresponding to each
class are represented by a matrix X !’ , where 'i" indicates

the trial class, k; is the trial number in that class, T is the

number of samples and N is the number of recording channels.
The problem consists of finding a spatial filter vector w that
maximizes the below expression:

, weR" (6)

where N is the number of available channels, C_I and (:

represents the spatial covariance matrices for class 'i' and 'j".
These covariance matrices are normalized and averaged across
all trials in the corresponding class. w is the answer of the

problem which should be found. Suppose that X,
X k(j) e R™ are band pass filtered EEG trials recorded for two

classes. The covariance matrices of each trial and each class
are given by

C,, =EIX —EXINX G -EX )] ()

C,, =E[XI-EXIMNXP-EXINT (8
where E[.] represents expectation operator. The normalized
and averaged covariance matrices are

< =_Ztrace(c ) ®)
— 1 ij
€= _Jk trace(C, ) (10)

Here n, and n, are the number of train trlals in classes 'i' and

j'.~ One solution to (6) can be obtained by simultaneous

diagonalization of C_I and (? LetC, éC_i+C_j. Suppose
that the eigenvalue decomposition of C, is
C, =U,AU] (11)

where A, is a diagonal matrix and the columns of U are the
eigenvectors corresponding to the eigenvalues in A, . Let

P=A,%U,, C, can be whitened by
PC.P" =PC,P" +PC,P" =1 =S, +5, (12)
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Here S, 2PC,P" and S, 2PC,P’
decomposition of S; and S; can be obtained from
S, =Ug A Ug " (13)
S; :USjAsjUSjT (14)

The eigenvalue

If (12) be pre-multiplied and post-multiplied by USIT and

U, respectively, we have

I =Ug"SUg +Ug TS Uy =Ag +Ug'SUg  (15)
SO
Us TS iUg =1 —Ag = A, (16)

The sum of diagonal elements in Ag and Asj is equal to 1
(equation 16), therefore, when the diagonal elements in A,
decrease, those in ASJ_ increase, and vice versa. Finally a

projection matrix W can be obtained from
w :UsiT P a7

Here the rows of projection matrix W are the spatial filters that
we are looking for. Each of these filters results a projected
signal in a new space which has maximum variance for one
class and minimum variance for the other. A set of projected
signals Y in new space, can be obtained from

Y =XWT (18)
where X is an EEG trial. The first component of Y,
corresponding to the outcome of the first filter, is expected to
have maximum variance for one class and minimum variance
for the other, and vice versa for the last component, with the
components in between having decreasing or increasing
variances, respectively. These variance values can be utilized
as features for classification. A computationally efficient way
for extracting these features is taking the extreme diagonal

elements of WC,W " where the feature vector f, can be
obtained from the first and last m diagonal elements d, , such
that f, =In(d, ). The logarithm of the diagonal elements is
computed to approximate the distribution of the features to a
normal distribution [3][4].

B. Classification

1) Two-task classification

In this study, based on the previous research, only one
spatial filter and therefore one feature was used to classify
EEG test trials. To accomplish this goal, after training CSP
filters, the train data of class 'i' and 'j' are transformed to Y
space, such that

YO =x 0w T (19)
Y =X W (20)

Y is a TxN matrix where each of its columns, is the spatial

decomposition of X on the corresponding row of W. Each of

the spatial filters are tested to get the most discriminant one.
Suppose that w . is a spatial filter which gives the most

discriminant features for two classes of data, the
corresponding extracted components can be obtained from
Vi =X W (21)
Y& =X, (22)
The corresponding features are
£ =In(var(y ") (23)
£ =Invar(y,}))) (24)

The means of these features for each class and all trials in that
class can be obtained from

ﬁ:nikag” (25)
i k=1
—_ 130
f. :Ikzlfk: (26)
—

These means are used to classify new EEG test data. When an
EEG trial arrives, feature f, for that trial and its Euclidean
distances from two class feature means are calculated. The
new data is labeled to the class with nearer distance.

it |f, | <[f, —F,|=class i 27)

if :fx—f_i‘>fx—m:class:'j‘ (28)

As suggested in [1], a logistic function was used for
classifying, such that

1
"~ 1rexp(—(f, —th)) '

Suppose that IT >ﬂ ,

y = +T). 9

if :y>05=class:'i’ (30)
if :y<05=class:'j" (31)

2) Multi task classification

There are different solutions for multi-task classification
problems. Here, a sequential classification method is used to
classify multi-task imagery movements. This is done by using
a two-stage classifying strategy. To do this, a set of ten weight
vectors (or the most discriminant CSP spatial filters) are
trained using CSP method. Four of these vectors are trained as
‘one class versus all' method, and named as W .y » W oys a1

W, andw,, ., . For example, to train w,,, , ten trials of

class 1 are used as class 'i' trials and thirty trials of class 2, 3
and 4 (ten of each) are used as class 'j' trials. The other six
weight vectors are trained for two-class cases. These vectors
are namEd as W:Iys.2 ' les.3' W:Iys.4 ! WZ\/s.3 ! WZ\/s.4 and W3v5.4 )

To get these vectors, ten trials of each class are used as train
data. For classification, in the first stage one vs. all classifiers
and in the second stage two-task classifiers are used.
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Figure 2. A block diagram of multi-task classifying strategy.

As a new EEG trial arrives, in the first stage four 'one
versus all' classifiers, label that trial. Classifiers output 0O if
input data is detected as class ‘all' and output 1 if it is detected
as one of the 1 to 4 classes. Four cases can happen,

e Case 1: Only one classifier outputs '1'.

e Case 2: Two classifiers output '1".

e Case 3: Three classifiers output '1".

e Case 4: Four classifiers output '1' or '0".

In the next stage input data is labeled using two-task
classifiers by four rules corresponding to each of the cases.

e Rule 1: The final label of input data is the same as
classifier label with output '1'. For example, if only
classifier 2 vs. all outputs '1', the final label is ‘class
2",

e Rule 2: The input data is subsequently labeled using
the two-task classifier which is corresponded to the
two classifiers with output '1'. For example, if
classifier 1vs.all and classifier 3 vs. all output '1', the
final label is the output of classifier 1 vs. 3 for that
data.

e Rule 3: The input data is labeled using the two-task
classifiers which are corresponded to the three 'one
vs. all' classifiers with output '1'. The label with two
votes from these classifiers is known as final label. If
all three labels had one vote, the input data cannot be
labeled.

e Rule 4: AIll two-task classifiers are used for
classifying input data. If one of the labels has three
votes, it is known as final label. If only two labels
had two votes, case 2 is used to get the final label. If
three labels had two votes, case 3 is used to get the
final label.

Another way to classify multi-task data could be using
only stage two of the proposed strategy. In this case it is
supposed that case 4 happened and classification follows. Fig
2 presents a block diagram of the multi-task classifying
strategy.

C. CSP filter adaptation using EKF
Here, spatial filter w , is adapted by each new EEG trial

using below equations,

W, o= (32)

init \/eT

p

=

Prediction equations:

th :Wtufl (33)
Ptp = PtLll +Q171 (34)
where
Qt—l = max{o, (utu—l _utp—l)}'l (35)
u=y@-y) (36)
wC. w'

=X 37

y wCw' +1 (37)

Script 'P' stands for ‘prediction’, 'u" stands for 'update’, 't'
indicates current step and 't-1' indicates former step. P is the
covariance matrix of w, I is an identity matrix, (u/, —u®,) is
information gain from the last updating, and u represents the
uncertainty of the classifier output y.

Update equations:

Suppose that ﬁ >ﬂ ,

if :y>05=>w;=w/+k, (z,-y/’) (38)

if 1y <05=>w/ =w/ -k (z,-Y/) (39)

p =R’ -k,Gw/C, P’ (40)

. =P‘—pC w'P (41)

Gs?? +Copps
where
2

B @L+wrPC w'P)? (42)

s®=wC,PC w' (43)

s w

C.___ adjusts adaptation speed. Using a suitable value for

cons

C,,. is important. Here this value was set manually for each

case. Consider that Tsui et al. [1] used supervised learning
paradigm, where they knew class label of incoming data. As
proposed in [8], In this study, an assumed target function is
used for z, . Unlike [1] and [8], that run adaptation algorithm

when one class is detected, in this work adaptation algorithm
is run whether class 'i' or class 'j' is detected. This is done by
manipulating update equation in a way that detection of class
'I' has the same effect on w as detection of class 'i'.



TABLE I.

RESULTS OF TWO-TASK CLASSIFICATION

Data without artifacts class | 1vs.2 | 1vs3 | 1vs4 | 2vs3 | 2vsd | 3vs4d | lvs.all | 2vs.all | 3vs.all | 4vs. all
No adaptation 82.94 | 93.79 | 96.87 97.69 100 75.96 84.49 89.53 80.62 74.41
Subject 1 Supervised adaptation 83.72 | 93.79 | 98.43 | 98.46 100 86.04 85.65 89.53 82.55 86.43
Unsupervised adaptation 83.72 | 93.79 | 98.43 | 98.46 100 86.04 86.04 89.53 82.55 87.20
No adaptation 59.09 | 77.94 | 86.56 | 67.64 | 74.62 | 63.76 77.03 68.88 60.76 64.44
Subject 2 Supervised adaptation 66.66 | 80.88 | 86.56 | 73.52 | 77.61 | 75.36 79.25 77.03 82.96 78.51
Unsupervised adaptation 63.63 | 80.88 | 86.56 | 72.05 79.10 | 73.91 79.25 77.03 82.96 77.03
No adaptation 74.60 | 71.87 | 83.33 | 77.04 93.65 | 70.31 74.80 81.88 57.48 78.74
Subject 3 Supervised adaptation 77.77 | 75.00 | 87.87 | 90.16 | 95.23 70.31 74.80 84.25 76.37 85.00
Unsupervised adaptation 79.36 | 73.43 | 87.87 90.16 | 96.82 | 70.31 74.80 85.82 76.37 85.82
Data with artifacts class | 1vs.2 | 1vs.3 | 1vs4 | 2vs3 | 2vsd | 3vsd | lvs.all | 2vs.all | 3vs.all | 4vs. all
No adaptation 80.62 | 93.75 | 96.87 | 98.12 | 98.75 | 81.25 83.75 87.18 80.93 77.81
Subject 1 Supervised adaptation 81.87 | 93.75 | 98.75 | 98.75 | 98.75 | 86.25 85.00 87.18 81.56 85.31
Unsupervised adaptation 81.87 | 93.75 | 98.75 | 98.75 | 98.75 | 86.25 85.00 87.18 81.25 85.93
No adaptation 58.00 | 77.00 | 73.00 70.00 | 75.00 | 67.00 77.50 68.00 62.50 69.00
Subject 2 Supervised adaptation 60.00 | 83.00 | 76.00 | 72.00 | 75.00 | 73.00 78.50 75.00 79.50 75.00
Unsupervised adaptation 59.00 | 82.00 | 76.00 | 72.00 | 75.00 | 73.00 78.50 75.50 79.50 75.50
No adaptation 71.00 | 73.00 | 82.00 | 84.00 | 89.00 | 66.00 66.50 89.00 72.00 76.00
Subject 3 Supervised adaptation 77.00 | 74.00 | 84.00 | 92.00 | 94.00 69.00 67.50 89.50 75.00 81.50
Unsupervised adaptation 77.00 | 77.00 | 84.00 | 92.00 | 94.00 | 69.00 70.00 89.50 75.00 82.00

The CSP filter can also be updated using a supervised
learning paradigm. In this case z, =1 if a true positive is
detected for class 'i' or a false positive is detected for class 'j'
and z, =0 if a false positive is selected for class 'i' or a true
positive is detected for class 'j'. This means

1Ly >05
e {o, y <05
In this case the update equations for w are
If class ‘i happened =w,' =w ? +k, (z, =y,) (45)
If class 'j' happened =w,' =w -k, (z, —=y;) (46)

For multi-task classifier adaptation, as a new EEG trial
arrives, all one-versus-all classifiers and three of two-task
classifiers are adapted. These three classifiers are
corresponding to the label of input data for supervised method

and corresponding to the final label for unsupervised one.

IV. RESULTS

The proposed method was applied on dataset 'a" from BCI
competition-11l.  Here both two-task and multi-task
classification scenarios were considered. For two-task problem
the method was applied to all two-class pairs and to all 'one
versus all' cases from each subject. As it was mentioned, the
first ten trials of each class were used to train CSP filters, the
rest were used as test data. Classifications were performed in
two methods, classifications without adaptation and with
adaptation. The adaptation also carried out by supervised and
unsupervised manners. The results are reported for these
conditions and their performance is evaluated by accuracy
defined as [TP/(TP + FP)], where TP is the number of true
positives and FP is the number of false positives.



TABLE Il

RESULTS OF MULTI-TASK CLASSIFICATION

runl run 2 run3 run 4

Data without artifacts total class 1 class 2 class 3 class 4 total total total

No adaptation 78.29 96.87 75.38 50.76 90.62 78.29 78.29 78.29

Subject 1 Supervised adaptation 82.55 92.18 76.92 75.38 85.93 81.87 83.33 82.94
Unsupervised adaptation 83.72 95.31 76.92 76.92 85.93 84.37 83.72 84.10

No adaptation 48.14 42.42 33.33 80.00 35.29 48.14 48.14 48.14

Subject 2 Supervised adaptation 55.55 48.48 42.42 71.42 58.82 54.81 52.59 51.85
Unsupervised adaptation 54.81 48.48 39.39 71.42 58.52 53.33 52.59 52.59

No adaptation 56.69 78.78 53.33 41.93 51.51 56.69 56.69 56.69

Subject 3 Supervised adaptation 61.41 78.78 66.66 41.93 57.57 59.84 60.62 61.41
Unsupervised adaptation 61.41 75.75 66.66 45.16 57.57 60.62 60.62 61.41

Data with artifacts run 1 run 2 run3 run4

total class 1 class 2 class 3 class 4 total total total

No adaptation 79.06 97.50 76.25 52.50 90.00 79.06 79.06 79.06
Subject 1 Supervised adaptation 83.12 90.00 77.50 82.50 82.50 82.81 82.18 81.87
Unsupervised adaptation 83.75 92.50 77.50 81.25 83.75 84.06 83.75 84.37

No adaptation 46.00 36.00 38.00 76.00 34.00 46.00 46.00 46.00

Subject2 Supervised adaptation 50.00 42.00 44.00 58.00 56.00 49.00 48.50 48.00
Unsupervised adaptation 48.50 42.00 40.00 56.00 56.00 48.00 47.50 47.50

No adaptation 58.00 76.00 68.00 40.00 48.00 58.00 58.00 58.00

Subject 3 Supervised adaptation 62.00 76.00 80.00 42.00 50.00 61.00 62.00 61.50
Unsupervised adaptation 61.00 72.00 80.00 44.00 48.00 61.00 61.00 61.00

The mentioned dataset has marked trials with artifact. To see
the effects of artifacts on accuracies, classifications were
performed on data with artifacts and on data without artifacts.
In the case with artifacts, train and test data for two-task
problem and only test data for multi-task problem contained
artifacts.

Table 1 represents results for two-task problem and for
different subjects. Consider that the selection of input task
data was random, it caused near but different results for
adaptive classification in different runs. Here the best result
for each case is reported. The results for all subjects and most
cases show improvements as adaptation algorithm was taking
into account. In some cases (such as class 1vs.3 for subject 1)
adaptation did not caused better accuracies but worked as well
as algorithm with no adaptation. In most cases unsupervised

adaptation results as good as supervised one and in some cases
(for example class 2vs.4 and data with artifact for subject 2) it
out performed supervised algorithm. Subject 1 had the best
performance. The best improvements in accuracies with about
13 to 19 percents, happened for subject 1 class 3vs.4 and
4vs.all, subject 2 class 3vs.4, subject 3 class 2vs.3 and subject
3 class 2vs.all (data with no artifact).

Table 2 represents results for multi-task problem. Here the
results of different runs for algorithm with adaptation are
reported; also the results of run 1 are reported for each task
separately. The classification for subject 2 and 3 was only
done by using stage two of multi-task classification strategy.
As it can be seen, adaptive classifier improved the total
detection accuracies. Subject 1 had the best performance; for
this subject, task 3 provided poorest results and decreased the



total accuracy. Adaptation method had adjusted different task
accuracies and significantly increased task 3 detection rate.
Although it caused lower detection rate for tasks 1, 2 and 4, it
totally improved the results. In most cases unsupervised
adaptation out performed supervised one. For subject 2, task 3
had the best results. Adaptation method had adjusted different
task accuracies which caused lower detection rate for task 3
and higher detection rate for the other tasks. The results were
totally improved. Unsupervised method had worked as good
as supervised one. For subject 3, task 1 had the best results.
Adaptation method had adjusted different task accuracies. It
caused higher detection rate for all tasks except 1 (data
without artifacts). The results were totally improved.
Unsupervised method had almost worked as well as the
supervised one.

V. DISCUSSION

As it is clear from results, the presented method is able to
improve the performance of BCI systems. It is because of the
fact that EEG signals have a non stationary nature. This proves
the necessity of online adaptation in BCIl systems.
Unsupervised method seemed to perform as good as
supervised one and it is very important, because in a real
application the labels of incoming data are not provided, so
unsupervised learning is prior to supervised one. The
algorithm presented here, was applied synchronously on a
multi-task EEG dataset, but the theme of this method is
capable to be performed asynchronously, where fast online
adaptation is needed. Using EKF algorithm guarantees this
fast, online and optimized estimation of interested parameters.

It worth to note that, because of studying reasons only one
spatial filter was used as feature extractor and classifier. It is
predictable that using more features will improve the
performance of the BCI system under study.

VI. CONCLUSION

Because of the non-stationary nature of EEG signals in BCI
applications, online adaptation for feature extraction and
classification is essential. This paper proposed a novel CSP
based feature extraction and classification method for two-task
and multi-task scenarios, which can be adaptive through an
extended Kalman filter. The usefulness of the proposed
method was demonstrated by applying it to dataset 'a' from
BCI competition-11l1. The results showed a remarkable
improvement in terms of classification accuracy in comparison
with standard CSP method with no adaptation. The proposed
method was implemented synchronously. Because of small
computational requirements and perfect recursive properties of
EKF, the proposed method can be easily and effectively
applied to asynchronous BCI systems where, fast, online
adaptation is needed. Further studies should consider
asynchronous BCI as well as synchronous one.
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