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Abstract—Brain Computer Interface (BCI) provides a 

communication channel via computer between the mind and 

environment. Extracting suitable and discriminant features is one 

of the most important stages in BCI Applications. Common 

spatial pattern (CSP) is a well-known feature extraction method; 

however, due to the non-stationary nature of EEG signals CSP 

should be updated through the time. 

This paper proposes a novel adaptation method using 

extended Kalman filter (EKF) for CSP feature elicitation and 

classification for BCI systems. In this method, EKF updates CSP 

filters in both supervised and unsupervised schemes. The 

proposed method was applied to data of BCI competition-III 

containing two- and multi-task imagery movements. Results 

demonstrate a considerable improvement in terms of 

classification accuracy by the proposed method in comparison 

with standard CSP method. 

Keywords-brain computer interface; common spatial patterns; 

extended Kalman filter; adaptation; supervised; unsupervised 

I.  INTRODUCTION 

A brain computer interface (BCI) is a system which allows 

an individual to communicate with outside world by 

translating his brain signal changes [1]. These changes 

(patterns) can be emerged by performing specific real or 

imagery movements or different cognitive activities. Each of 

these patterns can be detected and translated to a specific 

action by a trained classifier program in the computer [1]. The 

main challenging problem in BCI is to extract and classify 

these patterns, especially while using non-invasive signal 

acquisition methods such as electroencephalogram (EEG). 

EEG signals are filtered by soft and hard tissues of the head 

while passing from the source to scalp. This causes to distort 

temporal and local information of the brain signals. 

Furthermore, in EEG recording process each electrode records 

a combination of signals from several sources. To overcome 

these drawbacks, some approaches assume that brain source 

signals distort only spatially while passing through different 

layers of brain and scalp [2]. Common spatial patterns (CSP) 

is one the most popular methods which uses this assumption. 

CSP is a method to extract the uncorrelated components from 

multi-channel data [3][4]. The output of this method is a set of 

spatial filters which can discriminate two classes of data by 

extracting components of maximum variance (energy) for one 

class and minimum variance for the others [2][5]. 

EEG signals have a non-stationary nature due to several 

factors such as changing in the firing patterns of neurons 

through the time, changes in condition of recording 

environment, unsteady electrode impedance during recording, 

fatigue and etc. These non-stationery conditions make 

adaptation essential for feature extraction and classification in 

EEG based BCI systems [1]. 

Kalman filter is known as one of the greatest data fusion 

algorithms. This is the optimal estimator for one dimensional 

linear system with Gaussian error statistics. Kalman filter can 

be used for smoothing noisy data and providing estimations of 

parameters of interest, such as states of a dynamic system. 

Small computational requirements and perfect recursive 

properties make this filter one of the most favorite estimators 

[6]. Kalman filter estimates system states by combining noisy 

measurements with predictions of interested parameters. These 

predictions are based on the system dynamic model and the 

last state of the parameters. In the original Kalman filter, 

dynamic and observation models should necessarily be linear, 

while in its extended version, one of these models or both of 

them can be nonlinear [7]. In this study, CSP filter elements 

were considered as system parameters and were adapted using 

an extended Kalman filter (EKF). 

Lowne et al. [8] proposed an adaptive logistic classifier for 

BCI experiments which used features from a nonlinear 

mapping. The adaptation algorithm was implemented using an 

EKF. Tsui et al. [1][9] used this idea to adapt a linear 

discriminant analysis (LDA) classifier with logarithmic band 

power  features for BCI applications. In this work, the same 

idea was used to update CSP filters which were trained for 

feature extraction and classification. In the classification step 

as a new EEG test trial arrives, an adaptation algorithm based 

on EKF runs. This adaptation algorithm is executed in both 

supervised and unsupervised manners, where the label of 

incoming data is used and not used in the training, 

respectively. The proposed method was investigated by 

applying it to dataset 'a' from BCI competition-III. 

Classification was done for two-task and multi-task scenarios.  

In the next Section the employed dataset is introduced. In 

Section III the theoretical details behind the proposed method 

and in Section IV, results of different tests are presented. The 

outcomes of these results are discussed in Section V and are 

followed with some concluding comments in Section VI. 

 

mailto:ali.mobaien@gmail.com


 
Figure 1 a. Position of EEG electrodes, b. Timing of the paradigm. 

II. DATASET 

In this study, dataset 'a' from BCI competition-III was used 

[10]. This is a cued motor imagery, multi-task dataset, 

provided by the Laboratory of Brain-Computer 

Interfaces (BCI-Lab), Graz University of Technology. The 

dataset consists of 4 classes (left hand, right hand, foot, and 

tongue) from 3 subjects (ranging from quite good to fair 

performance). 60 EEG channels (according to the scheme in 

Fig.1a) and 60 trials per class (task) were recorded. The EEG 

was sampled with 250 Hz and was filtered between 1 and 

50Hz and also a Notch filter was applied to eliminate the 

electric city. The data of all runs was concatenated. 

The paradigm of recording was to perform imagery 

movements according to a cue. The order of cues 

corresponding to each movement was random. After each trial 

begun, the first 2s were quite, at t=2s an acoustic stimulus 

indicated the beginning of the trial, and a cross “+” is 

displayed; then from t=3s an arrow to the left, right, up or 

down was displayed for 1 s; at the same time the subject was 

asked to imagine a left hand, right hand, tongue or foot 

movement, respectively, until the cross disappeared at t=7s 

(Fig.1b). 

The analysis was done on 5 Laplacian derivation channels 

named as 3LC , 1LC , zLC , 4LC  and 2LC  where 
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' xych ' stands for BCI recording channels (Fig.1b). The 

Laplacian derivation was chosen, because it showed better 

results. Also the analysis was done on data from 3.5 to 7 

seconds, which is the respond period to the cues (for subject 2 

and class 1 analysis was done on data from 3.5 to 6.6 

seconds). Data was subsequently band pass filtered between 8 

to 30 Hz by a Butterworth filter of order 4. 

III. METHODS 

A. Common Spatial Patterns [5] 

     In the following, EEG signal trials corresponding to each 

class are represented by a matrix ( )

,i

i

k TxNX , where 'i' indicates 

the trial class, ik  is the trial number in that class, T is the 

number of samples and N is the number of recording channels. 

The problem consists of finding a spatial filter vector w that 

maximizes the below expression: 
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T

i

T

j

w C w

w C w
 ,  Nw R                  (6) 

where N is the number of available channels, iC and jC

represents the spatial covariance matrices for class 'i' and 'j'. 

These covariance matrices are normalized and averaged across 

all trials in the corresponding class. w is the answer of the 

problem which should be found. Suppose that ( )

i

i

kX , 

( )

j

j TxN

kX R are band pass filtered EEG trials recorded for two 

classes. The covariance matrices of each trial and each class 

are given by 
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where E[.] represents expectation operator. The normalized 

and averaged covariance matrices are  
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Here 
in and 

jn  are the number of train trials in classes 'i' and 

'j'.  One solution to (6) can be obtained by simultaneous 

diagonalization of iC and jC . Let c i jC C C . Suppose 

that the eigenvalue decomposition of cC  is 

T

c c c cC U U                             (11) 

where c is a diagonal matrix and the columns of cU  are the 

eigenvectors corresponding to the eigenvalues in c . Let

0.5 T

c cP U , cC  can be whitened by 

T T T

c i j i jPC P PC P PC P I S S              (12) 
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Here 
T

i iS PC P and
T

j jS PC P . The eigenvalue 

decomposition of iS and jS  can be obtained from 

i i i

T

i S S SS U U    (13) 

j j j

T
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If (12) be pre-multiplied and post-multiplied by 
i
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iSU  respectively, we have 
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The sum of diagonal elements in 
iS and

jS is equal to 1 

(equation 16), therefore, when the diagonal elements in 
iS

decrease, those in 
jS increase, and vice versa. Finally a 

projection matrix W can be obtained from  

i

T
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Here the rows of projection matrix W are the spatial filters that 

we are looking for. Each of these filters results a projected 

signal in a new space which has maximum variance for one 

class and minimum variance for the other. A set of projected 

signals Y in new space, can be obtained from 
TY XW                   (18) 

where X is an EEG trial. The first component of Y, 

corresponding to the outcome of the first filter, is expected to 

have maximum variance for one class and minimum variance 

for the other, and vice versa for the last component, with the 

components in between having decreasing or increasing 

variances, respectively. These variance values can be utilized 

as features for classification. A computationally efficient way 

for extracting these features is taking the extreme diagonal 

elements of  
T

xWC W where the feature vector xf  can be  

obtained from the first and last m diagonal elements xd , such 

that ln( )x xf d . The logarithm of the diagonal elements is 

computed to approximate the distribution of the features to a 

normal distribution [3][4]. 

B. Classification 

1) Two-task classification 

In this study, based on the previous research, only one 

spatial filter and therefore one feature was used to classify 

EEG test trials. To accomplish this goal, after training CSP 

filters, the train data of class 'i' and 'j' are transformed to Y 

space, such that  
( ) ( )

i i

i i T

k kY X W                        (19) 

( ) ( )

j j

j j T

k kY X W                  (20) 

Y is a TxN matrix where each of its columns, is the spatial 

decomposition of X on the corresponding row of W. Each of 

the spatial filters are tested to get the most discriminant one. 

     Suppose that maxw is a spatial filter which gives the most 

discriminant features for two classes of data, the 

corresponding extracted components can be obtained from 
( ) ( )
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The means of these features for each class and all trials in that 

class can be obtained from 
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These means are used to classify new EEG test data. When an 

EEG trial arrives, feature xf for that trial and its Euclidean 

distances from two class feature means are calculated. The 

new data is labeled to the class with nearer distance. 

: : ' 'x i x jif f f f f class i         (27) 

: : ' 'x i x jif f f f f class j     (28) 

     As suggested in [1], a logistic function was used for 

classifying, such that 
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1 exp( ( ))x

y
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2) Multi task classification 

There are different solutions for multi-task classification 

problems. Here, a sequential classification method is used to 

classify multi-task imagery movements. This is done by using 

a two-stage classifying strategy. To do this, a set of ten weight 

vectors (or the most discriminant CSP spatial filters) are 

trained using CSP method. Four of these vectors are trained as 

'one class versus all' method, and named as 1. .vs allw , 2. .vs allw , 

3. .vs allw  and 4. .vs allw . For example, to train 1. .vs allw , ten trials of 

class 1 are used as class 'i' trials and thirty trials of class 2, 3 

and 4 (ten of each) are used as class 'j' trials. The other six 

weight vectors are trained for two-class cases. These vectors 

are named as 1 .2vsw , 1 .3vsw , 1 .4vsw , 2 .3vsw , 2 .4vsw  and 3 .4vsw . 

To get these vectors, ten trials of each class are used as train 

data. For classification, in the first stage one vs. all classifiers 

and in the second stage two-task classifiers are used.    



 
Figure 2. A block diagram of multi-task classifying strategy.

 

     As a new EEG trial arrives, in the first stage four 'one 

versus all' classifiers, label that trial. Classifiers output 0 if 

input data is detected as class 'all' and output 1 if it is detected 

as one of the 1 to 4 classes. Four cases can happen, 

 Case 1: Only one classifier outputs '1'. 

 Case 2: Two classifiers output '1'. 

 Case 3: Three classifiers output '1'. 

 Case 4: Four classifiers output '1' or '0'. 

In the next stage input data is labeled using two-task 

classifiers by four rules corresponding to each of the cases. 

 Rule 1: The final label of input data is the same as 

classifier label with output '1'. For example, if only 

classifier 2 vs. all outputs '1', the final label is 'class 

2'. 

 Rule 2: The input data is subsequently labeled using 

the two-task classifier which is corresponded to the 

two classifiers with output '1'. For example, if 

classifier 1vs.all and classifier 3 vs. all output '1', the 

final label is the output of classifier 1 vs. 3 for that 

data. 

 Rule 3: The input data is labeled using the two-task 

classifiers which are corresponded to the three 'one 

vs. all' classifiers with output '1'. The label with two 

votes from these classifiers is known as final label. If 

all three labels had one vote, the input data cannot be 

labeled. 

 Rule 4: All two-task classifiers are used for 

classifying input data. If one of the labels has three 

votes, it is known as final label. If only two labels 

had two votes, case 2 is used to get the final label. If 

three labels had two votes, case 3 is used to get the 

final label.  

Another way to classify multi-task data could be using 

only stage two of the proposed strategy. In this case it is 

supposed that case 4 happened and classification follows. Fig 

2 presents a block diagram of the multi-task classifying 

strategy. 

C. CSP filter adaptation using EKF 

Here, spatial filter cspw  is adapted by each new EEG trial 

using below equations, 
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     Prediction equations: 
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Script 'P' stands for 'prediction', 'u' stands for 'update', 't' 

indicates current step and 't-1' indicates former step. P is the 

covariance matrix of w, I is an identity matrix, 
1 1( )u p

t tu u   is 

information gain from the last updating, and u represents the 

uncertainty of the classifier output y. 

     Update equations: 

Suppose that i jf f  , 
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consC  adjusts adaptation speed. Using a suitable value for 

consC  is important. Here this value was set manually for each 

case. Consider that Tsui et al. [1] used supervised learning 

paradigm, where they knew class label of incoming data. As 

proposed in [8], In this study, an assumed target function is 

used for tz . Unlike [1] and [8], that run adaptation algorithm 

when one class is detected, in this work adaptation algorithm 

is run whether class 'i' or class 'j' is detected. This is done by 

manipulating update equation in a way that detection of class 

'j' has the same effect on w as detection of class 'i'. 



TABLE I.       RESULTS OF TWO-TASK CLASSIFICATION 

4 vs. all 3 vs. all 2 vs. all 1 vs. all 3 vs.4 2 vs.4 2 vs.3 1vs.4 1vs.3 1vs.2  Data without artifacts                         class 

74.41 80.62 89.53 84.49 75.96 100 97.69 96.87 93.79 82.94 No adaptation 

Subject 1 86.43  82.55 89.53 85.65 86.04 100 98.46 98.43 93.79 83.72 Supervised adaptation 

87.20 82.55 89.53 86.04  86.04 100 98.46 98.43 93.79 83.72 Unsupervised adaptation 

  

 64.44 60.76 68.88 77.03  63.76 74.62 67.64 86.56 77.94 59.09 No adaptation 

Subject 2 78.51  82.96 77.03 79.25  75.36 77.61 73.52 86.56 80.88 66.66 Supervised adaptation 

 77.03 82.96 77.03 79.25  73.91  79.10 72.05 86.56 80.88 63.63 Unsupervised adaptation 

  

78.74   57.48  81.88 74.80  70.31 93.65 77.04  83.33  71.87 74.60  No adaptation 

Subject 3 85.00  76.37  84.25  74.80  70.31 95.23  90.16  87.87  75.00  77.77 Supervised adaptation 

 85.82 76.37   85.82  74.80 70.31  96.82  90.16 87.87   73.43  79.36 Unsupervised adaptation 

  

  

4 vs. all 3 vs. all 2 vs. all 1 vs. all 3 vs.4 2 vs.4 2 vs.3 1vs.4 1vs.3 1vs.2  Data with artifacts                               class 

77.81  80.93 87.18 83.75  81.25 98.75  98.12  96.87  93.75  80.62 No adaptation 

Subject 1  85.31 81.56 87.18 85.00  86.25  98.75  98.75  98.75  93.75  81.87 Supervised adaptation 

 85.93 81.25 87.18 85.00  86.25  98.75  98.75  98.75  93.75  81.87 Unsupervised adaptation 

  

 69.00  62.50 68.00 77.50 67.00   75.00  70.00 73.00  77.00   58.00 No adaptation 

Subject 2 75.00  79.50 75.00 78.50  73.00  75.00  72.00  76.00  83.00  60.00 Supervised adaptation 

 75.50 79.50 75.50 78.50  73.00  75.00  72.00  76.00  82.00  59.00 Unsupervised adaptation 

  

76.00  72.00  89.00  66.50 66.00 89.00  84.00  82.00 73.00  71.00  No adaptation 

Subject 3 81.50  75.00   89.50 67.50  69.00 94.00  92.00  84.00  74.00  77.00 Supervised adaptation 

82.00   75.00  89.50 70.00  69.00 94.00  92.00  84.00  77.00  77.00 Unsupervised adaptation 

      

     The CSP filter can also be updated using a supervised 

learning paradigm. In this case 1tz   if a true positive is 

detected for class 'i' or a false positive is detected for class 'j' 

and 0tz   if a false positive is selected for class 'i' or a true 

positive is detected for class 'j'. This means 
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 
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In this case the update equations for w are 

If class 'i' happened ( )u p p

t t t t tw w k z y     (45) 

If class 'j' happened ( )u p p

t t t t tw w k z y           (46) 

For multi-task classifier adaptation, as a new EEG trial 

arrives, all one-versus-all classifiers and three of two-task 

classifiers are adapted. These three classifiers are 

corresponding to the label of input data for supervised method 

 

and corresponding to the final label for unsupervised one. 

IV. RESULTS 

The proposed method was applied on dataset 'a' from BCI 

competition-III. Here both two-task and multi-task 

classification scenarios were considered. For two-task problem 

the method was applied to all two-class pairs and to all 'one 

versus all' cases from each subject. As it was mentioned, the 

first ten trials of each class were used to train CSP filters, the 

rest were used as test data. Classifications were performed in 

two methods, classifications without adaptation and with 

adaptation. The adaptation also carried out by supervised and 

unsupervised manners. The results are reported for these 

conditions and their performance is evaluated by accuracy 

defined as [TP/(TP + FP)], where TP is the number of true 

positives and FP is the number of false positives. 



TABLE II.  RESULTS OF MULTI-TASK CLASSIFICATION 

run 4 run 3 run 2 run 1 
Data without artifacts 

total total total class 4 class 3 class 2 class 1 total 

78.29 78.29 78.29 90.62 50.76 75.38 96.87 78.29 No adaptation 

Subject 1 82.94  83.33 81.87 85.93 75.38 76.92 92.18  82.55 Supervised adaptation 

 84.10 83.72 84.37 85.93 76.92 76.92 95.31  83.72 Unsupervised adaptation 

 

48.14 48.14 48.14 35.29 80.00 33.33 42.42 48.14 No adaptation 

Subject 2 51.85 52.59 54.81 58.82 71.42 42.42 48.48 55.55 Supervised adaptation 

52.59 52.59 53.33 58.52 71.42 39.39 48.48 54.81 Unsupervised adaptation 

 

56.69 56.69 56.69 51.51 41.93 53.33 78.78 56.69 No adaptation 

 

Subject 3 
61.41 60.62 59.84 57.57 41.93 66.66 78.78 61.41 Supervised adaptation 

61.41 60.62 60.62 57.57 45.16 66.66 75.75 61.41 Unsupervised adaptation 

  

                

run 4 run 3 run 2 run 1 
Data with artifacts 

total total total class 4 class 3 class 2 class 1 total 

79.06 79.06 79.06 90.00 52.50 76.25 97.50 79.06 No adaptation 

Subject 1  81.87 82.18 82.81 82.50 82.50 77.50 90.00 83.12 Supervised adaptation 

84.37 83.75 84.06 83.75 81.25 77.50 92.50 83.75 Unsupervised adaptation 

 
46.00 46.00 46.00 34.00 76.00 38.00 36.00 46.00 No adaptation  

 

Subject2 48.00 48.50 49.00 56.00 58.00 44.00 42.00 50.00 Supervised adaptation 

47.50 47.50 48.00 56.00 56.00 40.00 42.00 48.50 Unsupervised adaptation  

 

58.00 58.00 58.00 48.00 40.00 68.00 76.00 58.00 No adaptation 

Subject 3 61.50 62.00 61.00 50.00 42.00 80.00 76.00 62.00 Supervised adaptation 

61.00 61.00 61.00 48.00 44.00 80.00 72.00 61.00 Unsupervised adaptation 

 

The mentioned dataset has marked trials with artifact. To see 

the effects of artifacts on accuracies, classifications were 

performed on data with artifacts and on data without artifacts. 

In the case with artifacts, train and test data for two-task 

problem and only test data for multi-task problem contained 

artifacts.   

     Table 1 represents results for two-task problem and for 

different subjects. Consider that the selection of input task 

data was random, it caused near but different results for 

adaptive classification in different runs. Here the best result 

for each case is reported. The results for all subjects and most 

cases show improvements as adaptation algorithm was taking 

into account. In some cases (such as class 1vs.3 for subject 1) 

adaptation did not caused better accuracies but worked as well 

as algorithm with no adaptation. In most cases unsupervised 

 

adaptation results as good as supervised one and in some cases 

(for example class 2vs.4 and data with artifact for subject 2) it 

out performed supervised algorithm. Subject 1 had the best 

performance. The best improvements in accuracies with about 

13 to 19 percents, happened for subject 1 class 3vs.4 and 

4vs.all, subject 2 class 3vs.4, subject 3 class 2vs.3 and subject 

3 class 2vs.all (data with no artifact). 

     Table 2 represents results for multi-task problem. Here the 

results of different runs for algorithm with adaptation are 

reported; also the results of run 1 are reported for each task 

separately. The classification for subject 2 and 3 was only 

done by using stage two of multi-task classification strategy. 

As it can be seen, adaptive classifier improved the total 

detection accuracies. Subject 1 had the best performance; for 

this subject, task 3 provided poorest results and decreased the 



total accuracy. Adaptation method had adjusted different task 

accuracies and significantly increased task 3 detection rate. 

Although it caused lower detection rate for tasks 1, 2 and 4, it 

totally improved the results. In most cases unsupervised 

adaptation out performed supervised one. For subject 2, task 3 

had the best results. Adaptation method had adjusted different 

task accuracies which caused lower detection rate for task 3 

and higher detection rate for the other tasks. The results were 

totally improved. Unsupervised method had worked as good 

as supervised one. For subject 3, task 1 had the best results. 

Adaptation method had adjusted different task accuracies. It 

caused higher detection rate for all tasks except 1 (data 

without artifacts). The results were totally improved. 

Unsupervised method had almost worked as well as the 

supervised one.  

V. DISCUSSION 

As it is clear from results, the presented method is able to 

improve the performance of BCI systems. It is because of the 

fact that EEG signals have a non stationary nature. This proves 

the necessity of online adaptation in BCI systems. 

Unsupervised method seemed to perform as good as 

supervised one and it is very important, because in a real 

application the labels of incoming data are not provided, so 

unsupervised learning is prior to supervised one. The 

algorithm presented here, was applied synchronously on a 

multi-task EEG dataset, but the theme of this method is 

capable to be performed asynchronously, where fast online 

adaptation is needed. Using EKF algorithm guarantees this 

fast, online and optimized estimation of interested parameters. 

It worth to note that, because of studying reasons only one 

spatial filter was used as feature extractor and classifier. It is 

predictable that using more features will improve the 

performance of the BCI system under study.   

VI. CONCLUSION 

Because of the non-stationary nature of EEG signals in BCI 

applications, online adaptation for feature extraction and 

classification is essential. This paper proposed a novel CSP 

based feature extraction and classification method for two-task 

and multi-task scenarios, which can be adaptive through an 

extended Kalman filter. The usefulness of the proposed 

method was demonstrated by applying it to dataset 'a' from 

BCI competition-III. The results showed a remarkable 

improvement in terms of classification accuracy in comparison 

with standard CSP method with no adaptation. The proposed 

method was implemented synchronously. Because of small 

computational requirements and perfect recursive properties of 

EKF, the proposed method can be easily and effectively 

applied to asynchronous BCI systems where, fast, online 

adaptation is needed. Further studies should consider 

asynchronous BCI as well as synchronous one. 
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