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Abstract— Model predictive control (MPC) of linear systems is 

well stablished in the literature. However, The MPC design of 

nonlinear systems has many challenges and complex calculations 

due to the inclusion of non-convex optimization problem. This 

paper, proposes a new approach based on linear matrix 

inequality to solve the MPC problem with finite horizon for 

nonlinear uncertain systems which contain additive uncertainty. 

The proposed algorithm can be applied to a wide class of 

nonlinear systems and guarantees their stability. The 

performance and effectiveness of the proposed controller is 

illustrated with numerical examples. 
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I.  INTRODUCTION  

MPC is a wide range of control approaches, where one 
uses a model for calculating a control signal explicitly, while 
via minimizing cost function (see e.g., [1]) Nowadays, MPC is 
applied on many industrial processes [2]. Since practical 
systems often have a nonlinear behavior, to improve the 
control performance and increase the quality of prediction, 
nonlinear model predictive control (NMPC) should be used 
for these systems [3-4]which changes the optimization 
problem  from convex programming to non- convex nonlinear 
problem [5]. In dealing with nonlinear systems, linearizing can 
change the problem to an easier problem [6] 

In practice, the actual system’s model contains some 
uncertainties to be considered in the control design while the 
controller should guarantee the stability of the system. 

In recent years, extensive works have been done to 
formulate the robust MPC problems as some LMIs which can 
be readily solved. The following researches are most relevant 
ones.  

In [7-9] robust MPC problem for discrete linear systems 
with Polytopic uncertainty models are considered. 

The main ideas in [7-9] are the use of infinite horizon cost 
functions and to formulate the necessary conditions for state-

feedback control laws in the framework of LMIs. In [10] the 
problem of a robust MPC based on LMI for a linear system 
with bounded uncertainty is presented. 

 In [11-13] nonlinear MPC problems by considering 
infinite horizon cost function are solved through LMIs for 
some classes of nonlinear systems. 

In [14] a dynamic output feedback model predictive 
control for nonlinear systems expressed by Hammerstein-
Wiener model is considered.  

In this paper, robust nonlinear MPC problem for a class of 
nonlinear systems is considered and the problem is formulated 
as LMIs. The approach is based on linear approximation of the 
nonlinear model in the vicinity of the current state. This 
approximation is updated iteratively in the MPC calculations. 

The paper is structured as follows; in Section II, the 
general nonlinear model is introduced. In Section III, the 
proposed approach is given and the robust nonlinear MPC 
problem is defined. The simulation results are given in Section 
IV. Finally, the conclusion is given in Section V.  

II. PROBLEM FORMULATION  

Consider the following nonlinear discrete system: 
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where k is the discrete time index,     nx k R is the state, 

    mu k R  is the input,   2. ,  . f C , and  is the 

additive uncertainty such that: 
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In order to design MPC for system (1) as a state-feedback 
law, at first the necessary conditions for locating the states of 
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the future time within an ellipse is obtained. Then, due to the 
ellipses calculated, through minimization of the cost function in 
the finite horizon, the control signal is obtained. 
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III. THE PROPOSED APPROACH 

The problem considered in Section II is a robust nonlinear 
MPC problem. To solve the problem, we must follow four 
steps: 
 In the first step, the nonlinear system is linearized around the 
initial operating point and the system dynamics is written as  a 
summation of two terms, a linear term and a second order 
nonlinear term (residue of linear system). In the second step, 
the upper bound for quadratic nonlinear term is calculated. In 
the third step, a condition is considered to guarantee the 
system states remain in an ellipse in each predictive step for 
the next predicting time. Finally in the last step, by 
establishing some conditions, these ellipses in each predictive 
step are forced to become small which will converge to around 
origin after some steps. Therefore the stability of the system is 
guaranteed. The proposed algorithm is extended to output 
tracking problem as well.  
 

The First step (The linearization step): 

 Linearizing The system around the working points, 
according to the Taylor expansion in the vicinity of the current 

state i.e.  ix x k  and  iu u k , we have: 
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By considering the parameters in the form of equation (5) 
the infinite expansion (4) can be written in the form of a finite 
expansion [15], 

        X k x k u k
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Then we have: 
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Finally the dynamic of the nonlinear system can be 
summarized in the form of equation (7): 

         0 (7)1 ,  i i i ix k f x u Ax k Bu k v k      

Now we can consider the quadratic term  iv k  as the 

additive uncertainty where the upper bound of this term is 
calculated at the next step.  

The Second step (obtaining the upper bound for nonlinear 
part of the system): 

The upper bound of  
i

v k is calculated as: 

          2
k || || (8)

i max i c
v k M X X k X k 

 

By solving the optimization problem (8) an upper bound for 

   k
max i c

M X is calculated as: 

  max  max iM X
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Since, the state of the system must be within an ellipse, the 

condition   ,
j j

X Q C   which is more conservative than 

        k ,|| ||
c

X B X k X k X k  is used. 

 By solving optimization problem (9), an upper bound for 
each vi (k), is calculated as: 

  2 2
(10)k || ||iv X X r   

By calculating the upper bound for all 
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 k      1,...,   &    0,1, , 1iv i n k N      in n-

dimensional space, a cube is created. In each step of prediction, 
the biggest ellipse which contains this cube in the form of 

 
(  ,0)
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Q is considered as a bound for nonlinear part of the 

system: 
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   (11) 

The Third step (Obtaining the necessary conditions for 
locating the states of the future time within ellipse): 

After linearizing the system, the state-space equations of 
the nonlinear system can be written as: 
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Thus, for k=0 we have: 
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(13) 

To obtain the control law, the necessary conditions for 

locating  x j within the ellipse is as follows: 
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By substituting equation (13) in constraint (14), we obtain: 

       

 

 

 

       

 

 

0

1 1

1

0

1 1

1

}

{

{ 0 1

1

2

0

0 1

1

2

j j

j i j ij

j

i i

d

j T

j

R

V

j j

j i j ij

j

i i

d

j

R

A x A Bu i A f C

v j

v j
I A A Q

v

A x A Bu i A f C

v j

v j
I A A

v

 

 



 

 



   




  

 



 




 

 
 
     
 
 

  

 

 

 

} 1

0

V



 
 
 
 
 
 












































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According to equations (11) and (16) and S-procedure 
lemma [16], we have: 
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The Forth step (Minimizing ellipse in the last step): 

Theorem1: The size of ellipse’s diameter ε(  ,0)jQ  is  
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equivalent to [17]:
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To obtain system stability, the predicated ellipse should be 
as small as possible and close to origin. For minimizing the 
calculated ellipses through LMI (17), according to theorem 1, it 
is enough to make matrix’s eigenvalues to be larger, while 
minimizing the norm of the center of the ellipse. 

A. The output tracking 

Consider the outputs as ( ) ( )y k cx k , for tracking the 

desired output, the upper bound of function which contains the 
difference between the predicted output and the desired output 
must be minimized: 
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By considering the Equation (13), it can be sho-wn that: 
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Therefore, the optimization problem (19) can be displayed 
in the following form: 
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According to equations (11) and (21) and S-procedure 
lemma, we have: 
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    
 
     
   
    
   
    

  
 
   
  





 

 

(22) 

B. Considering constraint on the input and convert it to a 

form of linear matrix inequality: 

1 1

2 2

1 1

2 2

T T

j j max

min j max

T T

min j j

I U U I u

u u u

u I U U I


 

   
  


 

 
 
 
 

(23) 

In the above expression 
j

I  is 1 N vector the jth element is 

equal to one and the other elements are equal to zero. 

 
1

0 0 1 0 0j N
I


                                 (24) 
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C. Considering constraint on the rate of changes of the input 

and convert it to a form of linear matrix inequality: 

1

1 1

2 2

1 1

2 2

T T

j j max

min j j max

T T

min j j

P U U P du

du u u du

du P U U I



 

    
  




Where: 

 1 1
0 0 1 1 0 0j j j N

P I I  
      

IV. NUMERICAL EXAMPLES 

In this section, to demonstrate the effectiveness of the 
proposed algorithm two numerical examples for stabilization 
and output tracking are considered. 

A. The Stabilization example: 

Consider a discrete nonlinear system as [13]: 

 

   

   
 

 

       
 

 
 2

2

3

1 2 3 3

1 2 1

2

2 3 22

3

3
10

2 .1 ( )

1 ( ) 

1 ( )
10

1
x k

x k
x k x k x k u k k

x k x k k

x k
x k x k k

x k

x k 






   

  

   


  













In this example, the only goal is to stabilize the states of 
system with finite MPC under these constraints on control 
signal: 

1.5 1.5u     

           & 

10.01 0.01j ju u                                          (28) 

Besides, the additive uncertain systems are given by: 

1

2

3

( ,0) & .01 (29)Q Q I 



 



 
 

    
 
  

Fig. 1 shows the effect of this algorithm on the stability of 

states for the initial condition
0

[ 2 : 3 : 5]
T

x     and the control 

signal is depicted in Fig. 2. 

 

Figure 1.  States responese of  system (27) 

 

Figure 2.  Control signal for system (27) 

B. The Output tracking example 

Consider the following DC/AC converter system [18] that 
shows the effectiveness of the proposed approach for output 
tracking. 

The state space equations are given as: 

   

2

2
1 1

1

3

2 2
2 2 12

1 1

2

( )
( ) 5 ( ) 5 ( ) 

( )

( ) ( )
( ) 7 ( ) 5 2 ( ) ( )

( ) ( )

x t
x t x t u t

x t

x t x t
x t x t x t u t

x t x t

y t x t


  


  

     
 

 



 



The system model was discretized with a sampling time as 
t=0.01 min before the algorithm was applied. Moreover we 
consider the following constraint on the control signal: 
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2 2u    

The aim of control system is to track 1
d

y  that is shown 

in Fig. 3 and the control effort control for this purpose is given 
in Fig. 4: 

V. CONCLUSION 

In this paper, an efficient and robust algorithm for nonlinear 
systems using finite horizon model predictive control is utilized 
through linear matrix inequalities. The Predicted state of the 
system is placed in an ellipsoids and by satisfying suitable 
constraints, the mentioned ellipses become smaller and smaller 
at each time step. This procedure finally will converge to zero. 
This algorithm can be used for a wide range of nonlinear 
systems to track the various types of desired inputs. The 
stability of this algorithm has been proved. Besides, the upper 
and lower bounds for the control and its rate can be satisfied 
using the preplanned constraints. 

 

Figure 3.  Output response for system (30) 

 

Figure 4.  Control signal for system (30) 
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